Download Free Cortical Evolution In Primates Book in PDF and EPUB Free Download. You can read online Cortical Evolution In Primates and write the review.

This volume of Progress in Brain Research provides a synthetic source of information about state-of-the-art research that has important implications for the evolution of the brain and cognition in primates, including humans. This topic requires input from a variety of fields that are developing at an unprecedented pace: genetics, developmental neurobiology, comparative and functional neuroanatomy (at gross and microanatomical levels), quantitative neurobiology related to scaling factors that constrain brain organization and evolution, primate palaeontology (including paleoneurology), paleo-anthropology, comparative psychology, and behavioural evolutionary biology. Written by internationally-renowned scientists, this timely volume will be of wide interest to students, scholars, science journalists, and a variety of experts who are interested in keeping track of the discoveries that are rapidly emerging about the evolution of the brain and cognition. Written by internationally renowned scientists, this timely volume will be of wide interest to students, scholars, science journalists, and a variety of experts who are interested in keeping track of the discoveries that are rapidly emerging about the evolution of the brain and cognition
This book brings together leading investigators who represent various aspects of brain dynamics with the goal of presenting state-of-the-art current progress and address future developments. The individual chapters cover several fascinating facets of contemporary neuroscience from elementary computation of neurons, mesoscopic network oscillations, internally generated assembly sequences in the service of cognition, large-scale neuronal interactions within and across systems, the impact of sleep on cognition, memory, motor-sensory integration, spatial navigation, large-scale computation and consciousness. Each of these topics require appropriate levels of analyses with sufficiently high temporal and spatial resolution of neuronal activity in both local and global networks, supplemented by models and theories to explain how different levels of brain dynamics interact with each other and how the failure of such interactions results in neurologic and mental disease. While such complex questions cannot be answered exhaustively by a dozen or so chapters, this volume offers a nice synthesis of current thinking and work-in-progress on micro-, meso- and macro- dynamics of the brain.
Leaders in cognitive psychology, comparative biology, and neuroscience discuss patterns of convergence and divergence seen in studies of human and nonhuman primate brains. The extraordinary overlap between human and chimpanzee genomes does not result in an equal overlap between human and chimpanzee thoughts, sensations, perceptions, and emotions; there are considerable similarities but also considerable differences between human and nonhuman primate brains. From Monkey Brain to Human Brain uses the latest findings in cognitive psychology, comparative biology, and neuroscience to look at the complex patterns of convergence and divergence in primate cortical organization and function. Several chapters examine the use of modern technologies to study primate brains, analyzing the potentials and the limitations of neuroimaging as well as genetic and computational approaches. These methods, which can be applied identically across different species of primates, help to highlight the paradox of nonlinear primate evolution--the fact that major changes in brain size and functional complexity resulted from small changes in the genome. Other chapters identify plausible analogs or homologs in nonhuman primates for such human cognitive functions as arithmetic, reading, theory of mind, and altruism; examine the role of parietofrontal circuits in the production and comprehension of actions; analyze the contributions of the prefrontal and cingulate cortices to cognitive control; and explore to what extent visual recognition and visual attention are related in humans and other primates. The Fyssen Foundation is dedicated to encouraging scientific inquiry into the cognitive mechanisms that underlie animal and human behavior and has long sponsored symposia on topics of central importance to the cognitive sciences.
The Arthur M. Sackler Colloquia of the National Academy of Sciences address scientific topics of broad and current interest, cutting across the boundaries of traditional disciplines. Each year, four or five such colloquia are scheduled, typically two days in length and international in scope. Colloquia are organized by a member of the Academy, often with the assistance of an organizing committee, and feature presentations by leading scientists in the field and discussions with a hundred or more researchers with an interest in the topic. Colloquia presentations are recorded and posted on the National Academy of Sciences Sackler colloquia website and published on CD-ROM. These Colloquia are made possible by a generous gift from Mrs. Jill Sackler, in memory of her husband, Arthur M. Sackler.
Why our human brains are awesome, and how we left our cousins, the great apes, behind: a tale of neurons and calories, and cooking. Humans are awesome. Our brains are gigantic, seven times larger than they should be for the size of our bodies. The human brain uses 25% of all the energy the body requires each day. And it became enormous in a very short amount of time in evolution, allowing us to leave our cousins, the great apes, behind. So the human brain is special, right? Wrong, according to Suzana Herculano-Houzel. Humans have developed cognitive abilities that outstrip those of all other animals, but not because we are evolutionary outliers. The human brain was not singled out to become amazing in its own exclusive way, and it never stopped being a primate brain. If we are not an exception to the rules of evolution, then what is the source of the human advantage? Herculano-Houzel shows that it is not the size of our brain that matters but the fact that we have more neurons in the cerebral cortex than any other animal, thanks to our ancestors' invention, some 1.5 million years ago, of a more efficient way to obtain calories: cooking. Because we are primates, ingesting more calories in less time made possible the rapid acquisition of a huge number of neurons in the still fairly small cerebral cortex—the part of the brain responsible for finding patterns, reasoning, developing technology, and passing it on through culture. Herculano-Houzel shows us how she came to these conclusions—making “brain soup” to determine the number of neurons in the brain, for example, and bringing animal brains in a suitcase through customs. The Human Advantage is an engaging and original look at how we became remarkable without ever being special.
Our understanding of the molecular mechanisms involved in mammalian brain development remains limited. However, the last few years have wit nessed a quantum leap in our knowledge, due to technological improve ments, particularly in molecular genetics. Despite this progress, the available body of data remains mostly phenomenological and reveals very little about the grammar that organizes the molecular dictionary to articulate a pheno type. Nevertheless, the recent progress in genetics will allow us to contem plate, for the first time, the integration of observation into a coherent view of brain development. Clearly, this may be a major challenge for the next century, and arguably is the most important task of contemporary develop mental biology. The purpose of the present book is to provide an overview that syn thesizes up-to-date information on selected aspects of mouse brain devel opment. Given the format, it was not possible to cover all aspects of brain development, and many important subjects are missing. The selected themes are, to a certain extent, subjective and reflect the interests of the contributing authors. Examples of major themes that are not covered are peripheral nervous system development, including myelination, the development of the hippocampus and several other CNS structures, as well as the developmental function of some important morphoregulatory molecules.
Review of brain evolution in primates including humans.
This book has brought together leading investigators who work in the new arena of brain connectomics. This includes ‘macro-connectome’ efforts to comprehensively chart long-distance pathways and functional networks; ‘micro-connectome’ efforts to identify every neuron, axon, dendrite, synapse, and glial process within restricted brain regions; and ‘meso-connectome’ efforts to systematically map both local and long-distance connections using anatomical tracers. This book highlights cutting-edge methods that can accelerate progress in elucidating static ‘hard-wired’ circuits of the brain as well as dynamic interactions that are vital for brain function. The power of connectomic approaches in characterizing abnormal circuits in the many brain disorders that afflict humankind is considered. Experts in computational neuroscience and network theory provide perspectives needed for synthesizing across different scales in space and time. Altogether, this book provides an integrated view of the challenges and opportunities in deciphering brain circuits in health and disease.
The book provides a stand-alone resource for neuroscience graduate students and established neuroscientists who have an interest in cortical evolution and primates.