Download Free Corrosion Testing Of Carbon Steel In Aerated Geothermal Brine Book in PDF and EPUB Free Download. You can read online Corrosion Testing Of Carbon Steel In Aerated Geothermal Brine and write the review.

Two major problems are associated with the use of cooled geothermal water as coolant for the 5 MW(e) Pilot Power Plant at Raft River. They are: (1) a scaling potential owing to the chemical species present in solution, and (2) the corrosive nature of the geothermal water on carbon steel. A water treatment test program was established to reduce or eliminate these problems. Data show that scale can be prevented by a combination of dispersants and controlling the concentration of scaling species in the circulating water. Corrosion cannot be controlled without a pretreatment of tubing material. With the pretreatment, a protective gamma iron oxide film is laid down on the tube surface, that with proper corrosion inhibitor additives, significantly reduces both general and pitting corrosion. However, longer term testing is required to determine protection of pitting corrosion.
Field corrosion studies were conducted at the East Mesa Known Geothermal Resources Area (KGRA) in the Imperial Valley, Calif., to determine the optimum materials of construction for use in geothermal mineral energy resource recovery plants. These studies included characterization of geothermal environments and in situ corrosion testing. The corrosion resistance of 10 alloys exposed to 5 brine and steam process environments was evaluated using the low-salinity, high-temperature brine from geothermal well Mesa 6-1. Of these alloys, Hastelloy C-276, Hastelloy S, Inconel 625, titanium-2 nickel, and 316 L stainless steel had excellent resistance to corrosion in all of the process environments; E-Brite 26-1 and 430 stainless steel had fair resistance. Although general corrosion rates for 4130 steel and 1020 carbon steel were substantially higher than those of the other iron-base alloys, these two alloys could prove useful in low-salinity process environments because of their low cost. Aluminum alloy 5005 was the least corrosion resistant alloys and pitted severely. Scales formed on all of the alloys in every process environment. Calcite, aragonite, and an amorphous silicate were the major components of the scales.
Corrosion research is being conducted by the Bureau of Mines, U.S. Department of the Interior, to determine suitable construction materials for geothermal resource recovery plants. High chromium-molybdenum iron-base alloys, nickel-base and titanium-base alloys, and a titanium-zirconium-molybdenum alloy (TZM) exhibited good resistance to general, crevice, pitting, and weld corrosion and stress corrosion cracking in laboratory tests in deaerated brines of the Salton Sea known geothermal resource area (KGRA) type at 232°C and in brine containing dissolved carbon dioxide and methane. Only titanium-base alloys were resistant to corrosion in oxygenated Salton Sea KGRA-type brine. Copper adversely affected the resistance to general corrosion of low-alloy steels in deaerated brine, whereas chromium, nickel, silicon, and titanium improved it. Carbon steel, Type 4130 steel, and Types 410 and 430 stainless steels exhibited poor corrosion resistance in field tests in five brine and steam process streams produced from geothermal well Magmamax No. 1. These alloys were highly susceptible to pitting and crevice corrosion. General corrosion rates were high for the carbon and Type 4130 steels.