Download Free Corrosion In Geothermal Brines Of The Salton Sea Known Geothermal Resource Area Book in PDF and EPUB Free Download. You can read online Corrosion In Geothermal Brines Of The Salton Sea Known Geothermal Resource Area and write the review.

Corrosion research is being conducted by the Bureau of Mines, U.S. Department of the Interior, to determine suitable construction materials for geothermal resource recovery plants. High chromium-molybdenum iron-base alloys, nickel-base and titanium-base alloys, and a titanium-zirconium-molybdenum alloy (TZM) exhibited good resistance to general, crevice, pitting, and weld corrosion and stress corrosion cracking in laboratory tests in deaerated brines of the Salton Sea known geothermal resource area (KGRA) type at 232°C and in brine containing dissolved carbon dioxide and methane. Only titanium-base alloys were resistant to corrosion in oxygenated Salton Sea KGRA-type brine. Copper adversely affected the resistance to general corrosion of low-alloy steels in deaerated brine, whereas chromium, nickel, silicon, and titanium improved it. Carbon steel, Type 4130 steel, and Types 410 and 430 stainless steels exhibited poor corrosion resistance in field tests in five brine and steam process streams produced from geothermal well Magmamax No. 1. These alloys were highly susceptible to pitting and crevice corrosion. General corrosion rates were high for the carbon and Type 4130 steels.
Toward the goal of maximizing minerals and metals recovery from domestic resources, the Bureau of Mines, U.S. Department of the Interior, has conducted in situ corrosion studies at the Salton Sea Known Geothermal Resources Area (KGRA) in the Imperial Valley, Calif., to evaluate and characterize materials of construction for geothermal resources recovery plants. General-, pitting, and crevice-corrosion characteristics of 13 commercially available alloys were investigated for periods of 15 and 30 days in seven process environments expected to be found in typical geothermal resources plants. Stainless steel alloy 29-4, Inconel 625, and the Hastelloys G, S, and C-276 were the most resistant to general corrosion, did not pit, and exhibited little susceptibility to crevice corrosion. Stainless steel alloys 430, E-Brite 26-1, and 6X had low general corrosion rates, but pitted and were susceptible to crevice corrosion. Stainless steel alloy 316 L had a low corrosion rate, but corroded intergranularly, pitted, and was susceptible to crevice corrosion and to stress-corrosion cracking. Titanium--1.5 nickel and TiCode-12 had low corrosion rates, did not pit, and were not susceptible to crevice corrosion. Carbon and 4130 steels had high corrosion rates, pitted, and had high susceptibilities to crevice corrosion. The major scale-forming mineral on the corrosion samples in most of the process environments studied was galena mixed with lesser amounts of other minerals.
Metallic alloys and nonmetallic materials, including coatings and plastic liners, were exposed to high-temperature (232.2°C [450°F]), highly saline (20%) brines in a 10-MW geothermal loop experimental facility at the Salton Sea Known Geothermal Resource Area in the Imperial Valley, Calif. Mild carbon steel corrodes rapidly, especially in presence of air, while nickel alloys are very resistant to the Salton Sea geothermal brines. The Teflon® coatings and the vinyl esters exhibited the greatest resistance among the nonmetallic materials tested. Twenty-seven proprietary scale inhibitors were tested to determine the ones most promising for use in the Salton Sea brines. Several scale control additives were effective in retarding silica precipitation at 90°C, the temperature limit of these laboratory tests.