Download Free Corrosion Cracking Book in PDF and EPUB Free Download. You can read online Corrosion Cracking and write the review.

The problem of stress corrosion cracking (SCC), which causes sudden failure of metals and other materials subjected to stress in corrosive environment(s), has a significant impact on a number of sectors including the oil and gas industries and nuclear power production. Stress corrosion cracking reviews the fundamentals of the phenomenon as well as examining stress corrosion behaviour in specific materials and particular industries.The book is divided into four parts. Part one covers the mechanisms of SCC and hydrogen embrittlement, while the focus of part two is on methods of testing for SCC in metals. Chapters in part three each review the phenomenon with reference to a specific material, with a variety of metals, alloys and composites discussed, including steels, titanium alloys and polymer composites. In part four, the effect of SCC in various industries is examined, with chapters covering subjects such as aerospace engineering, nuclear reactors, utilities and pipelines.With its distinguished editors and international team of contributors, Stress corrosion cracking is an essential reference for engineers and designers working with metals, alloys and polymers, and will be an invaluable tool for any industries in which metallic components are exposed to tension, corrosive environments at ambient and high temperatures. - Examines the mechanisms of stress corrosion cracking (SCC) presenting recognising testing methods and materials resistant to SCC - Assesses the effect of SCC on particular metals featuring steel, stainless steel, nickel-based alloys, magnesium alloys, copper-based alloys and welds in steels - Reviews the monitoring and management of SCC and the affect of SCC in different industries such as petrochemical and aerospace
Details the many conditions under which stress-corrosion cracking (SCC) can occur, the parameters which control SCC, and the methodologies for mitigating and testing for SCC, plus information on mechanisms of SCC with experimental data on a variety of materials. Contains information about environmen
Explains why pipeline stress corrosion cracking happens and how it can be prevented Pipelines sit at the heart of the global economy. When they are in good working order, they deliver fuel to meet the ever-growing demand for energy around the world. When they fail due to stress corrosion cracking, they can wreak environmental havoc. This book skillfully explains the fundamental science and engineering of pipeline stress corrosion cracking based on the latest research findings and actual case histories. The author explains how and why pipelines fall prey to stress corrosion cracking and then offers tested and proven strategies for preventing, detecting, and monitoring it in order to prevent pipeline failure. Stress Corrosion Cracking of Pipelines begins with a brief introduction and then explores general principals of stress corrosion cracking, including two detailed case studies of pipeline failure. Next, the author covers: Near-neutral pH stress corrosion cracking of pipelines High pH stress corrosion cracking of pipelines Stress corrosion cracking of pipelines in acidic soil environments Stress corrosion cracking at pipeline welds Stress corrosion cracking of high-strength pipeline steels The final chapter is dedicated to effective management and mitigation of pipeline stress corrosion cracking. Throughout the book, the author develops a number of theoretical models and concepts based on advanced microscopic electrochemical measurements to help readers better understand the occurrence of stress corrosion cracking. By examining all aspects of pipeline stress corrosion cracking—the causes, mechanisms, and management strategies—this book enables engineers to construct better pipelines and then maintain and monitor them to ensure safe, reliable energy supplies for the world.
High-strength steels are susceptible to delayed cracking under suitable conditions. Frequently such a brittle failure occurs at a stress that is only a fraction of the nominal yield strength. Considerable controversy exists over whether such failures result from two separate and distinct phenomena or whether there is but one mechanism called by two different names. Stress-corrosion cracking is the process in which a crack propagates, at least partially, by the stress induced corrosion of a susceptible metal at the advancing tip of the stress-corrosion crack. There is considerable evidence that this cracking results from the electrtrochemical corrosion of a metal subjected to tensile stresses, either residual or externally applied. Hydrogen-stress cracking is cracking which occurs as the result of hydrogen in the metal lattice in combination with tensile stresses. Hydrogen-stress cracking cannot occur if hydrogen is prevented from entering the steel, or if hydrogen that has entered during processing or service is removed before permanent damage has occurred. It is generally agreed that corrosion plays no part in the actual fracture mechanism. This report was prepared to point out wherein the two fracture mechanisms under consideration are similar and wherein they differ. From the evidence available today, the present authors have concluded that there are two distinct mechansims of delayed failure. (Author).
The report summarizes information from selected European papers and lectures that were published or presented between mid 1967 and July 1, 1968. Subjects discussed include: the nature of stress-corrosion, stress-corrosion in AlMg, AlMgZn, and AlMgSi alloys and testing for susceptibility to stress-corrosion cracking. (Author).