Download Free Correlating Structure And Oxygen Non Stoichiometry With Transport Behaviour Of Mixed Ionic Electronic Conducting Perovskite Related Oxides Book in PDF and EPUB Free Download. You can read online Correlating Structure And Oxygen Non Stoichiometry With Transport Behaviour Of Mixed Ionic Electronic Conducting Perovskite Related Oxides and write the review.

Advanced mixed ionic electronic conducting (MIEC) perovskites play an important role in many electrochemical systems for advanced energy technologies. They are major components in such devices as solid oxide fuel cells (SOFCs), oxygen separation membranes, chemical sensors and catalysts. In addition to energy technology, the development of these multifunctional materials is of crucial importance for transportation, aerospace engineering, and electronics. The use of these materials as chemical sensors is also important for anti-terrorism initiatives. The present book discusses progress and problems in the development of ionic, electronic, and MIEC materials as active materials in advanced energy systems; the development and design of solid-oxide fuel cells (SOFCs) for next-generation vehicles, chemical sensors and oxygen separation membranes; and identifies directions for future research, such as conducting mechanisms, stability and reliability of devices, degradation problems, crystal structure, classification of phase transitions exhibited by the materials.
This comprehensive handbook and ready reference details all the main achievements in the field of perovskite-based and related mixed-oxide materials. The authors discuss, in an unbiased manner, the potentials as well as the challenges related to their use, thus offering new perspectives for research and development on both an academic and industrial level. The first volume begins by summarizing the different synthesis routes from molten salts at high temperatures to colloidal crystal template methods, before going on to focus on the physical properties of the resulting materials and their related applications in the fields of electronics, energy harvesting, and storage as well as electromechanics and superconductivity. The second volume is dedicated to the catalytic applications of perovskites and related mixed oxides, including, but not limited to total oxidation of hydrocarbons, dry reforming of methane and denitrogenation. The concluding section deals with the development of chemical reactors and novel perovskite-based applications, such as fuel cells and high-performance ceramic membranes. Throughout, the contributions clearly point out the intimate links between structure, properties and applications of these materials, making this an invaluable tool for materials scientists and for catalytic and physical chemists.
Interest in the transition metal oxides with perovskite related structures goes back to the 1950s when the sodium tungsten bronzes NaxWO3 were shown to be metallic [1], the system Lal_xSr~MnO3 was found to contain a ferromagnetic conductive phase [2], and La0.sSr0.sCoO3 was reported to be a ferromagnetic metal, but with a peculiar magnetization of 1.5 #a/Co atom [3]. Stoichiometric oxide perovskites have the generic formula AMO3 in which the A site is at the center of a simple cubic array of M sites; the oxide ions form (180 ° 4)) M O M bridges to give an MO3 array of corner shared MO6/2 octahedra and the larger A cations have twelvefold oxygen coordination. Mismatch between the A O and M O equilibrium bond lengths introduces internal stresses. A compressive stress on the MO3 array is accommodated by a lowering of the M O M bond angle from 180 ° to (180 ° 4)); a tensile stress on the M O M bonds is accommodated by the formation of hexagonal polytypes [4].
This reference offers an overview of the bulk and surface properties of perovskite-like structures, and provides the latest discussions on the applications of these materials and processes. It also introduces ceramic methods for the processing of perovskite-derived high Tc cuprates.;Examining every available procedure for synthesizing high-surface-area perovskite oxides, this book: delineates processing techniques for preparing perovskite-derived high-critical-temperature superconductors; illustrates the relevance of physiochemical methods to investigate bulk and surface structures of perovskite compounds; explicates the importance of surface composition in the context of catalytic behaviour; summarizes methods of changing stoichiometry; shows how to design perovskite oxides for a given purpose; reviews key solid-state properties; and presents the major applications.