Download Free Coronary Blood Flow Book in PDF and EPUB Free Download. You can read online Coronary Blood Flow and write the review.

Research centering on blood flow in the heart continues to hold an important position, especially since a better understanding of the subject may help reduce the incidence of coronary arterial disease and heart attacks. This book summarizes recent advances in the field; it is the product of fruitful cooperation among international scientists who met in Japan in May, 1990 to discuss the regulation of coronary blood flow.
The ultrasound velocity tomography allows measurement of cardiac geometries for various phases in the cardiac cycle. The present tomograph makes reconstruc tions at intervals of 20 ms. Because of a lack of clear (intramural) landmarks (except the roots of the papillairy muscle), it is difficult to pinpoint spatial trajectories of particular points in the heart. Therefore, a second method was developed of injecting radiopaque markers in the heart and following their motion patterns during the cardiac cycle with help of a biplane X-ray equipment. The data obtained with both methods can be implemented in our finite element model of the heart to compute intramural stresses and strains. The results obtained sofar with the extended Darcy equation to account for the interaction of blood rheology and tissue mechanics look promising. Further testing with more sophisticated subjects than mentioned in Figure 9 is required before it will be implemented in our finite element model of the heart. We conclude that analysis of regional cardiac function, including regional myocardial blood flow, requires still a major research effort but the results obtained sofar justify, to our opinion, a continuation in this direction. Acknowledgement The authors acknowledge Dr. C. Borst and coworkers for doing the animal experiments and prof. Van Campen and dr. Grootenboer for their participation is some aspects of this work.
The fields of biological and medical physics and biomedical engineering are broad, multidisciplinary and dyanmic. They lie at the crossroads of frontier - search in physics, biology, chemistry, and medicine. The Biological & Me- cal Physics/Biomedical Engineering Series is intended to be comprehensive, covering a broad range of topics important to the study of the physical, che- cal and biological sciences. Its goal is to provide scientists and engineers with textbooks, monographs, and reference works to address the growing need for information. Books in the series emphasize established and emergent areas of science - cluding molecular, membrane, and mathematical biophysics; photosynthetic - ergy harvesting and conversion; information processing; physical principles of genetics; sensory communications; automata networks, neural networks, and cellular automata. Equally important will be coverage of applied aspects of b- logical and medical physics and biomedical engineering such as molecular el- tronic components and devices, biosensors, medicine, imaging, physical prin- ples of renewable energy production, advanced prostheses, and environmental control and engineering. Elias Greenbaum Oak Ridge, TN M. Zamir Department of Applied Mathematics University of Western Ontario London, Ontario, N6A 5B7 CANADA [email protected] Library of Congress Cataloging-in-Publication Data Zamir, M. (Mair) The physics of coronary blood flow / M. Zamir. p. cm. — (Biological and medical physics, biomedical engineering) Includes bibliographical references and index. 1. Coronary circulation. 2. Hemodynamics. 3. Blood flow. I. Title. II. Series. QP108.Z36 2005 612.1?7—dc22 2005042502 ISBN-10: 0-387-25297-5 e-ISBN: 0-387-26019-6 Printed on acid-free paper.
Covers all of the equations that candidates need to understand and be able to apply when sitting postgraduate anaesthetic examinations.
An illustrative and educational guide to the new OSCE component of the ABA Applied exam.
The aim of this treatise is to summarize the current understanding of the mechanisms for blood flow control to skeletal muscle under resting conditions, how perfusion is elevated (exercise hyperemia) to meet the increased demand for oxygen and other substrates during exercise, mechanisms underlying the beneficial effects of regular physical activity on cardiovascular health, the regulation of transcapillary fluid filtration and protein flux across the microvascular exchange vessels, and the role of changes in the skeletal muscle circulation in pathologic states. Skeletal muscle is unique among organs in that its blood flow can change over a remarkably large range. Compared to blood flow at rest, muscle blood flow can increase by more than 20-fold on average during intense exercise, while perfusion of certain individual white muscles or portions of those muscles can increase by as much as 80-fold. This is compared to maximal increases of 4- to 6-fold in the coronary circulation during exercise. These increases in muscle perfusion are required to meet the enormous demands for oxygen and nutrients by the active muscles. Because of its large mass and the fact that skeletal muscles receive 25% of the cardiac output at rest, sympathetically mediated vasoconstriction in vessels supplying this tissue allows central hemodynamic variables (e.g., blood pressure) to be spared during stresses such as hypovolemic shock. Sympathetic vasoconstriction in skeletal muscle in such pathologic conditions also effectively shunts blood flow away from muscles to tissues that are more sensitive to reductions in their blood supply that might otherwise occur. Again, because of its large mass and percentage of cardiac output directed to skeletal muscle, alterations in blood vessel structure and function with chronic disease (e.g., hypertension) contribute significantly to the pathology of such disorders. Alterations in skeletal muscle vascular resistance and/or in the exchange properties of this vascular bed also modify transcapillary fluid filtration and solute movement across the microvascular barrier to influence muscle function and contribute to disease pathology. Finally, it is clear that exercise training induces an adaptive transformation to a protected phenotype in the vasculature supplying skeletal muscle and other tissues to promote overall cardiovascular health. Table of Contents: Introduction / Anatomy of Skeletal Muscle and Its Vascular Supply / Regulation of Vascular Tone in Skeletal Muscle / Exercise Hyperemia and Regulation of Tissue Oxygenation During Muscular Activity / Microvascular Fluid and Solute Exchange in Skeletal Muscle / Skeletal Muscle Circulation in Aging and Disease States: Protective Effects of Exercise / References
Interventional cardiology has transitioned from angiographic subjective analysis of stenosis severity into assessment of plaque characteristics and objective assessment of stenosis severity. The evolution of novel interventional imaging modalities is progressively altering our understanding of coronary artery disease diagnosis and prognosis. This book will be an essential companion to assist interventional cardiologists in better assessing patients with Coronary Artery Disease. It will encompass and review all interventional imaging modalities and provide guidance for interventional cardiologists to use these modalities. ​
MOTOOMI NAKAMURA As we approach the 21st century, ischemic heart disease is the major cause of death in most of the developed nations of the world. Since the 1970s, much effort and expense have led to designs of coronary thrombolytic therapy, percutaneous coronary angioplasty (PTCA), coronary artery bypass grafting, heart transplantation, automatic defibrillators, as well as to the formation of beta blockers and com pounds which block the calcium channel. Socio-educational programs directed at exercise, diet, instruction in the risk factors of smoking, hyperlipidemia and hypertension have contributed to the decrease in the rate of morbidity and mortality of patients with ischemic heart disease. However, the first clinical event of ischemic heart disease, the so-called "heart attack" and sudden cardiac death continues to present problems, as the mechanisms involved in these events are poorly understood. It has long been thought that ischemic heart disease is the sequence of an organic fixed atherosclerotic obstruction of the epicardial coronary arteries and the role of coronary vasomotion has been given much less attention. Recent clinical and laboratory animal studies revealed that increased tonus and spasm of the large epicardial coronary arteries are the cause of various stages of ischemic heart disease. The role of coronary vasospasm in the development of un stable angina, sudden cardiac death and acute myocardial infarction remains open to debate. Pharmacophysiological studies showed that the epicardial large coronary artery contributes only 5% to regulation of normal coronary flow.
by JULIEN IE HOFFMAN One of the earliest coronary physiologists was Scaramucci who, in 1695, postu lated that during systole the contracting myocardium inhibited coronary blood flow. Since then, the many contributions that have been made to our knowledge of the coronary circulation can be arbitrarily divided into three phases based on advances in technical methods. The early phase of research into the coronary circulation, done with great difficulty with crude methods, may be regarded as ending in the 1940s, and it included major discoveries made by such well known investigators as Georg von Anrep, Ernest Starling, Carl Wiggers, and Louis Katz, who formulated much of our basic understanding of the field. After 1940, the field of coronary physiology entered a new phase when instruments for high fidelity registration of coronary flow and pressure became available. This era was domi nated by Donald Gregg who combined careful attention to the function of these instruments (some of which he helped to develop) with an extraordinary ability to discern mechanisms from apparently minor changes in coronary flow and pressure patterns. His book 'The Coronary Circulation in Health and Disease' set a new standard in the field. After 1960, techniques for measuring regional myocardial blood flow became available, and enabled a large group of eminent investigators to make major advances in understanding the physiology and pathophysiology of myocardial blood flow.