Download Free Corneal Biomechanics Book in PDF and EPUB Free Download. You can read online Corneal Biomechanics and write the review.

While lecturing in recent months at a number of prominent institutions, I asked some of the residents and fellows whether and how they might benefit from a book on corneal biomechanics. The typical response was the look of a deer caught in the headlights as they tried to intuit the “appropriate” answer, but had little understanding or insight as to why this would be an important and useful knowledge base for them now, or in the future. I then posed the question differently. “Would a book that explained corneal biomechanical principles and testing devices and their application in detecting eyes at risk for developing keratoconus and post-LASIK ectasia, understanding the biomechanical impact of specific types of keratorefractive surgery and riboflavin UV-A corneal collagen cross-linking, and the impact of corneal biomechanics on the fidelity of intraocular pressure measurement and risk for glaucoma progression be of interest?” Framed in this context, the answer I got was a resounding, “Yes!” Therein lies a fundamental disconnect that highlights both the opportunity and need to educate all ophthalmologists about this nascent field. This comprehensive book is strengthened by the breadth of contributions from leading experts around the world and provides an important resource for ophthalmologists at all levels of training and experience. It gives a panoramic snapshot of our understanding of corneal biomechanics today, bridging the gap between theoretical principles, testing devices that are commercially available and in development as well as current and potential future clinical applications. While there has been a long-held appreciation that all types of keratorefractive surgery have an impact and interdependence on corneal biomechanics and wound healing, the initial finite element analyses that were applied to understand radial keratotomy were limited by incorrect assumptions that the cornea was a linear, elastic, homogenous, isotropic material.1 With the advent of excimer laser vision correction, critical observations indicated that Munnerlyn’s theoretic ablation profiles did not account for either lower or higher order (e.g. spherical aberration) refractive outcomes,2 suggesting that there were important components missing from the equation—e.g., corneal biomechanics and wound healing. In a seminal editorial, Roberts3 pointed out that the cornea is not a piece of plastic, but rather a material with viscoelastic qualities. Since that time, much has been learned about spatial and depth- related patterns of collagen orientation and interweaving, as well as the biomechanical response to different keratorefractive surgeries that sever tension-bearing lamellae, as the cornea responds to and redistributes stress induced by IOP, hydration, eye rubbing, blinking and extraocular muscle forces.3-6 The first reports of post-LASIK ectasia7 highlighted the need to identify a biomechanical signature of early keratoconus as well as corneas at high risk of developing ectasia irrespective of their current topography or tomography. The introduction of two instruments into clinical use—the Ocular Response Analyzer (ORA) and the Corneal Visualization Scheimpflug Technology (Corvis ST)—that allow measurement of various biomechanical metrics further catapulted the field. The availability of these instruments in routine clinical settings allowed the systematic study of the effect of age, collagen disorders, collagen cross-linking, corneal rings, flaps of various depths, contour, sidecut angulation, pockets, and flockets, just to name of few. Future application of biomechanics to the sclera may improve our understanding of the development and prevention of myopia, as well as scleral surgeries and treatments under development for presbyopia. It was appreciated by Goldmann and Schmidt that corneal thickness and curvature would influence the measurement of applanation tonometry. The recent ability to measure some corneal biomechanical metrics have led to IOP measurement that may be more immune both to their influence and the impact of central corneal thickness (CCT). Certain chapters in this book explain how a thin cornea could be stiffer than a thick one and that stiffness is also impacted by IOP, thereby precluding simplistic attempts to adjust IOP measurements using nomograms based upon CCT alone. Also highlighted is how corneal hysteresis, the ability of the cornea to absorb and dissipate energy during the bidirectional applanation response to a linear Gaussian air puff, appears to be an independent risk factor for glaucoma progression and rate of progression.9,10 This comprehensive book starts out with a section devoted to outlining basic biomechanical principles and theories, teaching us the language of what Dupps11 has referred to as “mechanospeak”, thus providing a context and common vocabulary to better comprehend the following chapters. By first defining basic concepts such as stress-strain relationships and creep, this theoretical basis is later applied to explain the pathogenesis of corneal diseases, e.g., explaining how a focal abnormality in corneal biomechanical properties precipitates a cycle of decompensation and localized thinning and steepening, clinically expressed as ectasia progression. These early chapters further detail biomechanical differences between in-vivo and ex-vivo testing, between human and animal corneas and sclera, and between methods of testing. The second section provides a thorough description of two FDA-approved devices to measure corneal biomechanics in the clinic (i.e., the ORA and the Corvis ST), as well as an overview of potential future technologies, including OCT with air puff stimulus, ocular pulse elastography, and Brilloiun microscopy. The third and final section of the book is a thorough treatise on how to interpret the metrics derived from the waveform provided by available clinical devices; their adjunct use in ectasia risk screening; the comparative biomechanical impact of various keratorefractive surgeries and corneal procedures such as PRK, LASIK, SMILE, and corneal collagen cross-linking; the impact of corneal biomechanics on IOP measurement; and potential biomechanical markers of enhanced susceptibility to glaucoma progression. This compendium of our current knowledge of corneal biomechanics, its measurement and application, provides a strong foundation to more fully understand advances in keratorefractive and corneal surgery, diseases, and treatments, all of which are interdependent on and influence inherent corneal biomechanical properties and behavior. Both the robust aspects and limitations of our current understanding are presented, including the challenge of creating accurate and predictive finite element models that incorporate the impact of IOP, corneal thickness, geometry, and scleral properties on corneal biomechanics. This book provides a key allowing clinical ophthalmologists and researchers to grasp the basics and nuances of this exciting field and to shape it as it evolves in the future.
Covering all major components of the ocular system, this state-of-the-art text is essential for vision scientists, biomedical engineers, and advanced clinicians with an interest in the role of mechanics in ocular function, disease, therapeutics, and surgery. With every chapter, leading experts strengthen the arguments that biomechanics is an indispensable and rapidly evolving tool for understanding and managing ocular disease.
This book presents a unique approach not found in any other text for those looking to improve the clinical results of refractive surgery by gaining a better understanding of corneal biomechanics and the instrumentation related to it. Written by leading experts in the field, this book provides authoritative coverage of the interactions of the cornea and the bioinstrumentation, such as corneal topography, pachymetry, aberrometers, tonometry and optical coherence tomography. Organized in an easy-to-read manner, Corneal Biomechanics and Refractive Surgery is designed for refractive surgeons and general ophthalmologists alike and describes the biomechanical role of the corneal tissue and how each part is affected in refractive surgery. Additionally, showing what the bioinstrumentation can measure, how models can improve understanding of the interaction between biomechanics, bioinstrumentation, and refractive surgery, and how these models and bioinstrumentation together can improve the refractive results, are also discussed.
This book presents a new avenue in the field of ophthalmology and sheds light on the field of eye imaging. With the increasing availability of electronic devices and their important role in both personal and professional aspects of human life, there is a growing need for perfect vision. Ophthalmic imaging is a major tool for screening and documenting eye diseases in both medical and surgical fields of ophthalmology and is also of use for ophthalmologists around the globe. The number of eye-imaging devices has increased dramatically, however undiagnosed or poorly managed eye diseases remain a significant cause of ocular and visual problems worldwide. This essential guide addresses the need for a book that is dedicated to ophthalmic imaging, covering the cornea, glaucoma, retina and orbital imaging with updates on medical and surgical aspects of the topic.
This book focuses on the concept of ocular rigidity, the biomechanical properties and hydrodynamics of the human eye. The basics of anatomy and physiology are explored and the relevant data for the clinician are emphasized throughout the book. The engineering aspects as well as the clinical interpretation are presented to provide context. Ocular Rigidity, Biomechanics and Hydrodynamics of the Eye summarises recent evidence on ocular rigidity, but also provides a complete presentation of the data so far. The authors have recently worked on ocular rigidity corneal and globe biomechanics and hydrodynamics and the new, up-to-date data on the subject are highlighted in each chapter. The aim is to provide the framework or the understanding of these parameters and to determine their relevance in health and disease. This book will be an essential read for all practicing ophthalmologists looking to gain a more in-depth understanding of this interesting area of research particularly in refractive surgery and glaucoma.
Part. 1 Introduction to corneal function and surgery -- Part. 2 Testing and measuring corneal function -- Part. 3 Ocular surface surgery and reconstruction -- Part. 4 Techniques in corneal transplantation -- Part. 5 Special situations in corneal surgery -- Part. 6 Surgical correction of refractive errors.
As a degenerative disorder of the eye, keratoconus can cause substantial distortion of vision, with multiple images, streaking, and sensitivity to light all reported by patients. Keratoconus: Recent Advances in Diagnosis and Treatment updates ophthalmologists about the innovations that have occurred within the last decade, discussing the diagnostic imaging techniques that have been developed for keratoconus diagnosis, understanding of how examination techniques are related to the evolution of keratoconus, and how to indicate the different therapeutic tools that have been created for keratoconus over the last several years. Additionally, fundamentals for new diagnostic elements, based on the mathematical, physical and biomechanical data are analyzed in depth for a better understanding of the essential diagnostic steps for the clinician to guide patients towards the most adequate therapeutic tool in the case. Modern keratoplasty techniques, assisted by femtosecond lasers or other devices, are also covered and these techniques, along with the emerging conservative treatments, have added to more precise control of the evolution of the disease.
Biomechanical mechanisms may contribute to a large number of visual processes and pathologies, including glaucoma, keratoconus, refractive surgery, accommodation, presbyopia, myopia, hyperopia, trauma, retinal detachment, ocular development, vitreous substitution, cataract surgery, corneal transplant, and many others. Departures from homeostatic loading may drive a large number of these processes in ways we are only beginning to recognize. This Research Topic will explore how ocular biomechanics contribute to both the homeostasis and pathophysiology of the eye and visual system. It is generally unknown whether changes in load drive changes in biomechanical properties or vice versa. Clarifying driving forces for disease and elucidating the pathophysiologic response will ultimately enable the development of targeted treatments for many ocular and visual diseases for which biomechanics plays a role.
This book focuses on the characteristic of glaucomatous optic neuropathy and its relationship with cerebrospinal fluid (CSF) pressure. It also explores the potential novel methods to manage glaucoma by adjusting CSF pressure. This book covers several interesting topics such as why normal tension glaucoma (NTG) patients still develops into glaucoma without high intraocular pressure (IOP); and whether there are factors other than IOP contributing to the pathogenesis of NTG why the role of IOP in the pathogenesis of POAG becomes vague and controversial. This book contains over 40 chapters, including numerous images from clinical patients and experiments on gross anatomy, pathological tissue, and immunohistochemistry, electronic speculum etc. The ophthalmologists and researchers can also benefit from the clinical cases. We hope this book serves as a clinical guidance with practical significant for the understanding, prevention and diagnosis of glaucoma.