Download Free Core Transport Reduction In Tokamak Plasmas With Modified Magnetic Shear Book in PDF and EPUB Free Download. You can read online Core Transport Reduction In Tokamak Plasmas With Modified Magnetic Shear and write the review.

Ion temperature gradient (ITG or[eta][sub i]) driven microinstabilities are studied, using kinetic theory, for tokamak plasmas with very weak (positive or negative) magnetic shear (VWS). The gradient of magnetic shear as well as the effects of parallel and perpendicular velocity shear (v[prime][sub[parallel]] and v[prime][sub E]) are included in the defining equations. Two eigenmodes: the double (D) and the global (G) are found to coexist. Parametric dependence of these instabilities, and of the corresponding quasilinear transport is systematically analyzed. It is shown that, in VWS plasmas, a parallel velocity shear (PVS) may stabilize or destabilize the modes, depending on the individual as well as the relative signs of PVS and of the gradient of magnetic shear. The quasilinear transport induced by the instabilities may be significantly reduced with PVS in VWS plasmas. The v[prime][sub E] values required to completely suppress the instabilities are much lower in VWS plasmas than they are in normal plasmas. Possible correlations with tokamak experiments are discussed.
Reversed magnetic shear is considered a good candidate for improving the tokamak concept because it has the potential to stabilize MHD instabilities and reduce particle and energy transport. With reduced transport the high pressure gradient would generate a strong off-axis bootstrap current and could sustain a hollow current density profile. Such a combination of favorable conditions could lead to an attractive steady-state tokamak configuration. Indeed, a new tokamak confinement regime with reversed magnetic shear has been observed on the Tokamak Fusion Test Reactor (TFTR) where the particle, momentum, and ion thermal diffusivities drop precipitously, by over an order of magnitude. The particle diffusivity drops to the neoclassical level and the ion thermal diffusivity drops to much less than the neoclassical value in the region with reversed shear. This enhanced reversed shear (ERS) confinement mode is characterized by an abrupt transition with a large rate of rise of the density in the reversed shear region during neutral beam injection, resulting in nearly a factor of three increase in the central density to 1.2 X 10(exp 20) cube m. At the same time the density fluctuation level in the reversed shear region dramatically decreases. The ion and electron temperatures, which are about 20 keV and 7 keV respectively, change little during the ERS mode. The transport and transition into and out of the ERS mode have been studied on TFTR with plasma currents in the range 0.9-2.2 MA, with a toroidal magnetic field of 2.7-4.6 T, and the radius of the q(r) minimum, q{sub min}, has been varied from r/a = 0.35 to 0.55. Toroidal field and co/counter neutral beam injection toroidal rotation variations have been used to elucidate the underlying physics of the transition mechanism and power threshold of the ERS mode.
Plasma science is the study of ionized states of matter. This book discusses the field's potential contributions to society and recommends actions that would optimize those contributions. It includes an assessment of the field's scientific and technological status as well as a discussion of broad themes such as fundamental plasma experiments, theoretical and computational plasma research, and plasma science education.
In the Tokamak plasma, for fusion to be possible, we have to maintain a very high temperature and density at the core at the same time keeping them low at the edge to protect the machine. Nature does not favor gradients. Gradients are source of free energy that causes instability. But we require a large gradient to get energy from plasma fusion. We therefore, apply a huge magnetic field on the order of few Tesla (1 T-10 T) that confines the plasma in the core, maintaining gradients. Due to gradients in density of charged particles (ions and electrons), there is an electric field in the plasma. Heat and particle transport takes place from core to edge mainly through anomalous transport while the E x B velocity sheer acts to reduce the transport of heat and particles. The regime at which the E x B velocity shear exceeds the maximum linear instability growth rate, as a result, the transport of particles and heat gets locally reduced is termed as the formation of a transport barrier. This regime can be identified by calculating the transport coefficients in the local region. Sometimes it can be observed in the edge where it is called an edge barrier while if it is near the core it is an internal transport barrier. There is a positive feedback loop between gradients and transport barrier formation. External heating and current drives play an important role to control such barriers. Auxiliary heating like neutral beam injection (NBI) and radio frequency (RF) heating can be used at a proper location (near the core of the plasma) to trigger or (far outside from the core) to destroy those barriers. Barrier control mechanism in the burning plasmas in international thermonuclear test reactor (ITER) parameter scenarios employing fusion power along with auxiliary heating source and pellets are studied. Continuous bombardment with pellets in the interval of a fraction of a second near the core of the burning plasma results in a stronger barrier. Frozen pellets along with auxiliary heating are found to be helpful to control the barriers in the tokamak plasmas. Active control mechanism for transport barriers using pellets and auxiliary heating in one of tokamaks in United States (DIII-D) parameter scenarios are presented in which intrinsic hysteresis is used as a novel control tool. During this process, a small background NBI power near the core assists in maintaining the profile. Finally, a self-sustained control mechanism in the presence of core heating is also explored in Japanese tokamak (JT-60SA) parameter scenarios. Centrally peaked narrow NBI power is mainly absorbed by ions with a smaller fraction by the electrons. Heat exchange between the electron and ion channels and heat conduction in the electron channel are found to be the main processes that govern this self control effect. A strong barrier which is formed in the ion channel is found to play the main role during the profile steepening while the burst after the peaked core density is found to have key role in the profile relaxation.