Download Free Coral Reef Flood Protection And Coral Growth Typology Book in PDF and EPUB Free Download. You can read online Coral Reef Flood Protection And Coral Growth Typology and write the review.

One of the main consequences of our actions as humans is the ever increasing force of climate change and the many natural disasters that come as a result of it. A major threat to the stability of our cities and societies is that of rising sea level and the resulting coastal flooding. A city that has began to think of solutions is the city of Boston, pushing them to form an initiative known as "Climate Ready Boston". The issue of both coastal and storm water flooding are highlighted by this initiative and are addressed with a proposed solution." This project explores the use of natural buffer systems as a source of knowledge to be applied to a coastal protection typology. The element of nature chosen to be studied in this thesis is the coral and more specifically, how the form and material of coral reefs are able to mitigate the damages of incoming waves as a result of storm surges. The form and materiality of the coral reefs are translated into a modular coastal protection typology that can be applied on any coast. However, the project places the typology on the coast of Dorchester, MA due to the high level of sea level rise and therefore, flooding events that will occur in the short, middle, and longer terms in the region. The area relies on a resilient harbor front to thrive, due to the saturation of the inland zones by residential areas. As a result, protection of the water front access pathways is crucial since they also align with the flooding inundation pathways. Hence, this project zooms in on one of the inundation pathways and places the typology in that region. The aims of the intervention are to not only mitigate flooding, but to also use the materiality of limestone in order to regrow a coral reef in the longer timescale. This in turn helps achieve the goal of increasing biodiversity. This thesis therefore translates a natural system to protect both humans, as well as promote healthier and protected habitats for the betterment of coastal marine life.
Coral reef declines have been recorded for all major tropical ocean basins since the 1980s, averaging approximately 30-50% reductions in reef cover globally. These losses are a result of numerous problems, including habitat destruction, pollution, overfishing, disease, and climate change. Greenhouse gas emissions and the associated increases in ocean temperature and carbon dioxide (CO2) concentrations have been implicated in increased reports of coral bleaching, disease outbreaks, and ocean acidification (OA). For the hundreds of millions of people who depend on reefs for food or livelihoods, the thousands of communities that depend on reefs for wave protection, the people whose cultural practices are tied to reef resources, and the many economies that depend on reefs for fisheries or tourism, the health and maintenance of this major global ecosystem is crucial. A growing body of research on coral physiology, ecology, molecular biology, and responses to stress has revealed potential tools to increase coral resilience. Some of this knowledge is poised to provide practical interventions in the short-term, whereas other discoveries are poised to facilitate research that may later open the doors to additional interventions. A Research Review of Interventions to Increase the Persistence and Resilience of Coral Reefs reviews the state of science on genetic, ecological, and environmental interventions meant to enhance the persistence and resilience of coral reefs. The complex nature of corals and their associated microbiome lends itself to a wide range of possible approaches. This first report provides a summary of currently available information on the range of interventions present in the scientific literature and provides a basis for the forthcoming final report.
Coral reefs are critical to ocean and human life because they provide food, living area, storm protection, tourism income, and more. However, human-induced stressors, such as overfishing, sediment, pollution, and habitat destruction have threatened ocean ecosystems globally for decades. In the face of climate change, these ecosystems now face an array of unfamiliar challenges due to destructive rises in ocean temperature, acidity and sea level. These factors lead to an increased frequency of bleaching events, hindered growth, and a decreasing rate of calcification. Research on interventions to combat these relatively new stressors and a reevaluation of longstanding interventions is necessary to understand and protect coral reefs in this changing climate. Previous research on these methods prompts further questions regarding the decision making process for site-specific interventions. A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs builds upon a previous report that reviews the state of research on methods that have been used, tested, or proposed to increase the resilience of coral reefs. This new report aims to help coral managers evaluate the specific needs of their site and navigate the 23 different interventions described in the previous report. A case study of the Caribbean, a region with low coral population plagued by disease, serves as an example for coral intervention decision making. This report provides complex coral management decision making tools, identifies gaps in coral biology and conservation research, and provides examples to help individuals and communities tailor a decision strategy to a local area.
Coral reefs represent the most spectacular and diverse marine ecosystem on the planet as well as a critical source of income for millions of people. However, the combined effects of human activity have led to a rapid decline in the health of reefs worldwide, with many now facing complete destruction. Their world-wide deterioration and over-exploitation has continued and even accelerated in many areas since the publication of the first edition in 2009. At the same time, there has been a near doubling in the number of scientific papers that have been written in this short time about coral reef biology and the ability to acclimate to ocean warming and acidification. This new edition has been thoroughly revised and updated, incorporating the significant increase in knowledge gained over the last decade whilst retaining the book's focus as a concise and affordable overview of the field. The Biology of Coral Reefs provides an integrated overview of the function, physiology, ecology, and behaviour of coral reef organisms. Each chapter is enriched with a selection of 'boxes' on specific aspects written by internationally recognised experts. As with other books in the Biology of Habitats Series, the emphasis in this book is on the organisms that dominate this marine environment although pollution, conservation, climate change, and experimental aspects are also included. Indeed, particular emphasis is placed on conservation and management due to the habitat's critically endangered status. A global range of examples is employed which gives the book international relevance.
Published by the American Geophysical Union as part of the Coastal and Estuarine Studies, Volume 61. The effects of increased atmospheric carbon dioxide and related climate change on shallow coral reefs are gaining considerable attention for scientific and economic reasons worldwide. Although increased scientific research has improved our understanding of the response of coral reefs to climate change, we still lack key information that can help guide reef management. Research and monitoring of coral reef ecosystems over the past few decades have documented two major threats related to increasing concentrations of atmospheric CO2: (1) increased sea surface temperatures and (2) increased seawater acidity (lower pH). Higher atmospheric CO2 levels have resulted in rising sea surface temperatures and proven to be an acute threat to corals and other reef-dwelling organisms. Short periods (days) of elevated sea surface temperatures by as little as 1–2°C above the normal maximum temperature has led to more frequent and more widespread episodes of coral bleaching-the expulsion of symbiotic algae. A more chronic consequence of increasing atmospheric CO2 is the lowering of pH of surface waters, which affects the rate at which corals and other reef organisms secrete and build their calcium carbonate skeletons. Average pH of the surface ocean has already decreased by an estimated 0.1 unit since preindustrial times, and will continue to decline in concert with rising atmospheric CO2. These climate-related Stressors combined with other direct anthropogenic assaults, such as overfishing and pollution, weaken reef organisms and increase their susceptibility to disease.
Are coral reefs sufficiently resilient to withstand the changing environmental conditions of the future? Research is necessary to gain a better understanding of how reefs will respond and how resilient they are. Various approaches to characterize and analyze reef responses from the molecular to community and habitat levels are all essential. Trends could be analyzed from spatially extensive and/or long-term monitoring data and applied to novel management strategies. Reef resilience research continues to remain relevant and important to the future of coral reefs. The contributions in this volume provide a further dimension to the understanding of reef resilience.
The Great Barrier Reef Marine Park is 344 400 square kilometres in size and is home to one of the most diverse ecosystems in the world. This comprehensive guide describes the organisms and ecosystems of the Great Barrier Reef, as well as the biological, chemical and physical processes that influence them. Contemporary pressing issues such as climate change, coral bleaching, coral disease and the challenges of coral reef fisheries are also discussed. In addition,the book includes a field guide that will help people to identify the common animals and plants on the reef, then to delve into the book to learn more about the roles the biota play. Beautifully illustrated and with contributions from 33 international experts, The Great Barrier Reef is a must-read for the interested reef tourist, student, researcher and environmental manager. While it has an Australian focus, it can equally be used as a baseline text for most Indo-Pacific coral reefs. Winner of a Whitley Certificate of Commendation for 2009.
A global overview of the potential impacts of climate change and sea level rise on coral reefs, and of the implications of such impacts for ecological sustainable use of coral reefs. Includes information on the status and trends of reef conservation and use around the world, and suggestions for management of reefs in a changing world.
This book covers in one volume materials scattered in hundreds of research articles, in most cases focusing on specialized aspects of coral biology. In addition to the latest developments in coral evolution and physiology, it presents chapters devoted to novel frontiers in coral reef research. These include the molecular biology of corals and their symbiotic algae, remote sensing of reef systems, ecology of coral disease spread, effects of various scenarios of global climate change, ocean acidification effects of increasing CO2 levels on coral calcification, and damaged coral reef remediation. Beyond extensive coverage of the above aspects, key issues regarding the coral organism and the reef ecosystem such as calcification, reproduction, modeling, algae, reef invertebrates, competition and fish are re-evaluated in the light of new research and emerging insights. In all chapters novel theories as well as challenges to established paradigms are introduced, evaluated and discussed. This volume is indispensible for all those involved in coral reef management and conservation.