Download Free Copper Molybdenum And Vanadium In Biological Systems Book in PDF and EPUB Free Download. You can read online Copper Molybdenum And Vanadium In Biological Systems and write the review.

"Volume 31, devoted solely to the role of vanadium in life processes, offers a comprehensive and timely account of this fascinating field by 37 distinguished, international authorities. Highlights the properties of the various oxidation states of vanadium, their affinity for biogenic ligands, the effects of vanadium species on enzyme activity, the role of vanadium in nitrogenases and haloperoxidases, and more."
Volume 39: Molybdenum and Tungsten: Their Roles in Biological Processes is devoted soley to the vital research area on molybdenum and tungsten and their role in biology. It offers a comprehensive and timely account of this fascinating topic by 40 distinguished international authorities. Topics include: transport, homeostasis, regulation and binding of molybdate and tungstate to proteins, crystallographic characterization, coordination of complexes, and biosynthesis.
Over the past several decades, vanadium has increasingly attracted the interest of biologists and chemists. The discovery by Henze in 1911 that certain marine ascidians accumulate the metal in their blood cells in unusually large quantities has done much to stimulate research on the role of vanadium in biology. In the intervening years, a large number of studies have been carried out to investigate the toxicity of vanadium in higher animals and to determine whether it is an essential trace element. That vanadium is a required element for a few selected organisms is now well established. Whether vanadium is essential for humans remains unclear although evidence increasingly suggests that it probably is. The discovery by Cantley in 1977 that vanadate is a potent inhibitor of ATPases lead to numerous studies of the inhibitory and stimulatory effects of vanadium on phosphate metabolizing enzymes. As a consequence vanadates are now routinely used as probes to investigate the mechanisms of such enzymes. Our understanding of vanadium in these systems has been further enhanced by the work of Tracy and Gresser which has shown striking parallels between the chemistry of vanadates and phosphates and their biological compounds. The observation by Shechter and Karlish, and Dubyak and Kleinzeller in 1980 that vanadate is an insulin mimetic agent has opened a new area of research dealing with the hormonal effects of vanadium. The first vanadium containing enzyme, a bromoperoxidase from the marine alga Ascophyllum nodosum, was isolated in 1984 by Viltner.
MILS-13 provides an up-to-date review on the relationships between essential metals and human diseases, covering 13 metals and 3 metalloids: The bulk metals sodium, potassium, magnesium, and calcium, plus the trace elements manganese, iron, cobalt, copper, zinc, molybdenum, and selenium, all of which are essential for life. Also covered are chromium, vanadium, nickel, silicon, and arsenic, which have been proposed as being essential for humans in the 2nd half of the last century. However, if at all, they are needed only in ultra-trace amounts, and because of their prevalence in the environment, it has been difficult to prove whether or not they are required. In any case, all these elements are toxic in higher concentrations and therefore, transport and cellular concentrations of at least the essential ones, are tightly controlled; hence, their homeostasis and role for life, including deficiency or overload, and their links to illnesses, including cancer and neurological disorders, are thoroughly discussed. Indeed, it is an old wisdom that metals are indispensable for life. Therefore, Volume 13 provides in an authoritative and timely manner in 16 stimulating chapters, written by 29 internationally recognized experts from 7 nations, and supported by more than 2750 references, and over 20 tables and 80 illustrations, many in color, a most up-to-date view on the vibrant research area of the Interrelations between Essential Metal Ions and Human Diseases.
The importance of metals in biology, the environment and medicine has become increasingly evident over the last twenty five years. The study of the multiple roles of metal ions in biological systems, the rapidly expanding interface between inorganic chemistry and biology constitutes the subject called Biological Inorganic Chemistry. The present text, written by a biochemist, with a long career experience in the field (particularly iron and copper) presents an introduction to this exciting and dynamic field. The book begins with introductory chapters, which together constitute an overview of the concepts, both chemical and biological, which are required to equip the reader for the detailed analysis which follows. Pathways of metal assimilation, storage and transport, as well as metal homeostasis are dealt with next. Thereafter, individual chapters discuss the roles of sodium and potassium, magnesium, calcium, zinc, iron, copper, nickel and cobalt, manganese, and finally molybdenum, vanadium, tungsten and chromium. The final three chapters provide a tantalising view of the roles of metals in brain function, biomineralization and a brief illustration of their importance in both medicine and the environment. Relaxed and agreeable writing style. The reader will not only fiind the book easy to read, the fascinating anecdotes and footnotes will give him pegs to hang important ideas on.Written by a biochemist. Will enable the reader to more readily grasp the biological and clinical relevance of the subject.Many colour illustrations. Enables easier visualization of molecular mechanismsWritten by a single author. Ensures homgeneity of style and effective cross referencing between chapters
Volume 39: Molybdenum and Tungsten: Their Roles in Biological Processes is devoted soley to the vital research area on molybdenum and tungsten and their role in biology. It offers a comprehensive and timely account of this fascinating topic by 40 distinguished international authorities. Topics include: transport, homeostasis, regulation and binding of molybdate and tungstate to proteins, crystallographic characterization, coordination of complexes, and biosynthesis.