Download Free Coordination Techniques For Distributed Model Predictive Control Book in PDF and EPUB Free Download. You can read online Coordination Techniques For Distributed Model Predictive Control and write the review.

The rapid evolution of computer science, communication, and information technology has enabled the application of control techniques to systems beyond the possibilities of control theory just a decade ago. Critical infrastructures such as electricity, water, traffic and intermodal transport networks are now in the scope of control engineers. The sheer size of such large-scale systems requires the adoption of advanced distributed control approaches. Distributed model predictive control (MPC) is one of the promising control methodologies for control of such systems. This book provides a state-of-the-art overview of distributed MPC approaches, while at the same time making clear directions of research that deserve more attention. The core and rationale of 35 approaches are carefully explained. Moreover, detailed step-by-step algorithmic descriptions of each approach are provided. These features make the book a comprehensive guide both for those seeking an introduction to distributed MPC as well as for those who want to gain a deeper insight in the wide range of distributed MPC techniques available.
DISTRIBUTED MODEL PREDICTIVE CONTROL FOR PLANT-WIDE SYSTEMS In this book, experienced researchers gave a thorough explanation of distributed model predictive control (DMPC): its basic concepts, technologies, and implementation in plant-wide systems. Known for its error tolerance, high flexibility, and good dynamic performance, DMPC is a popular topic in the control field and is widely applied in many industries. To efficiently design DMPC systems, readers will be introduced to several categories of coordinated DMPCs, which are suitable for different control requirements, such as network connectivity, error tolerance, performance of entire closed-loop systems, and calculation of speed. Various real-life industrial applications, theoretical results, and algorithms are provided to illustrate key concepts and methods, as well as to provide solutions to optimize the global performance of plant-wide systems. Features system partition methods, coordination strategies, performance analysis, and how to design stabilized DMPC under different coordination strategies. Presents useful theories and technologies that can be used in many different industrial fields, examples include metallurgical processes and high-speed transport. Reflects the authors’ extensive research in the area, providing a wealth of current and contextual information. Distributed Model Predictive Control for Plant-Wide Systems is an excellent resource for researchers in control theory for large-scale industrial processes. Advanced students of DMPC and control engineers will also find this as a comprehensive reference text.
The book shows how the operation of renewable-energy microgrids can be facilitated by the use of model predictive control (MPC). It gives readers a wide overview of control methods for microgrid operation at all levels, ranging from quality of service, to integration in the electricity market. MPC-based solutions are provided for the main control issues related to energy management and optimal operation of microgrids. The authors present MPC techniques for case studies that include different renewable sources – mainly photovoltaic and wind – as well as hybrid storage using batteries, hydrogen and supercapacitors. Experimental results for a pilot-scale microgrid are also presented, as well as simulations of scheduling in the electricity market and integration of electric and hybrid vehicles into the microgrid. in order to replicate the examples provided in the book and to develop and validate control algorithms on existing or projected microgrids. Model Predictive Control of Microgrids will interest researchers and practitioners, enabling them to keep abreast of a rapidly developing field. The text will also help to guide graduate students through processes from the conception and initial design of a microgrid through its implementation to the optimization of microgrid management. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
An essential reference to the modeling techniques of wind turbine systems for the application of advanced control methods This book covers the modeling of wind power and application of modern control methods to the wind power control—specifically the models of type 3 and type 4 wind turbines. The modeling aspects will help readers to streamline the wind turbine and wind power plant modeling, and reduce the burden of power system simulations to investigate the impact of wind power on power systems. The use of modern control methods will help technology development, especially from the perspective of manufactures. Chapter coverage includes: status of wind power development, grid code requirements for wind power integration; modeling and control of doubly fed induction generator (DFIG) wind turbine generator (WTG); optimal control strategy for load reduction of full scale converter (FSC) WTG; clustering based WTG model linearization; adaptive control of wind turbines for maximum power point tracking (MPPT); distributed model predictive active power control of wind power plants and energy storage systems; model predictive voltage control of wind power plants; control of wind power plant clusters; and fault ride-through capability enhancement of VSC HVDC connected offshore wind power plants. Modeling and Modern Control of Wind Power also features tables, illustrations, case studies, and an appendix showing a selection of typical test systems and the code of adaptive and distributed model predictive control. Analyzes the developments in control methods for wind turbines (focusing on type 3 and type 4 wind turbines) Provides an overview of the latest changes in grid code requirements for wind power integration Reviews the operation characteristics of the FSC and DFIG WTG Presents production efficiency improvement of WTG under uncertainties and disturbances with adaptive control Deals with model predictive active and reactive power control of wind power plants Describes enhanced control of VSC HVDC connected offshore wind power plants Modeling and Modern Control of Wind Power is ideal for PhD students and researchers studying the field, but is also highly beneficial to engineers and transmission system operators (TSOs), wind turbine manufacturers, and consulting companies.
Economic Model Predictive Control (EMPC) is a control strategy that moves process operation away from the steady-state paradigm toward a potentially time-varying operating strategy to improve process profitability. The EMPC literature is replete with evidence that this new paradigm may enhance process profits when a model of the chemical process provides a sufficiently accurate representation of the process dynamics. Systems using EMPC often neglect the dynamics associated with equipment and are often neglected when modeling a chemical process. Recent studies have shown they can significantly impact the effectiveness of an EMPC system. Concentrating on valve behavior in a chemical process, this monograph develops insights into the manner in which equipment behavior should impact the design process for EMPC and to provide a perspective on a number of open research topics in this direction. Written in tutorial style, this monograph provides the reader with a full literature review of the topic and demonstrates how these techniques can be adopted in a practical system.
Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors.
This book nds its origin in the WIDE PhD School on Networked Control Systems, which we organized in July 2009 in Siena, Italy. Having gathered experts on all the aspects of networked control systems, it was a small step to go from the summer school to the book, certainly given the enthusiasm of the lecturers at the school. We felt that a book collecting overviewson the important developmentsand open pr- lems in the eld of networked control systems could stimulate and support future research in this appealing area. Given the tremendouscurrentinterests in distributed control exploiting wired and wireless communication networks, the time seemed to be right for the book that lies now in front of you. The goal of the book is to set out the core techniques and tools that are ava- able for the modeling, analysis and design of networked control systems. Roughly speaking, the book consists of three parts. The rst part presents architectures for distributed control systems and models of wired and wireless communication n- works. In particular, in the rst chapter important technological and architectural aspects on distributed control systems are discussed. The second chapter provides insight in the behavior of communication channels in terms of delays, packet loss and information constraints leading to suitable modeling paradigms for commu- cation networks.
Networked and Distributed Predictive Control presents rigorous, yet practical, methods for the design of networked and distributed predictive control systems – the first book to do so. The design of model predictive control systems using Lyapunov-based techniques accounting for the influence of asynchronous and delayed measurements is followed by a treatment of networked control architecture development. This shows how networked control can augment dedicated control systems in a natural way and takes advantage of additional, potentially asynchronous and delayed measurements to maintain closed loop stability and significantly to improve closed-loop performance. The text then shifts focus to the design of distributed predictive control systems that cooperate efficiently in computing optimal manipulated input trajectories that achieve desired stability, performance and robustness specifications but spend a fraction of the time required by centralized control systems. Key features of this book include: • new techniques for networked and distributed control system design; • insight into issues associated with networked and distributed predictive control and their solution; • detailed appraisal of industrial relevance using computer simulation of nonlinear chemical process networks and wind- and solar-energy-generation systems; and • integrated exposition of novel research topics and rich resource of references to significant recent work. A full understanding of Networked and Distributed Predictive Control requires a basic knowledge of differential equations, linear and nonlinear control theory and optimization methods and the book is intended for academic researchers and graduate students studying control and for process control engineers. The constant attention to practical matters associated with implementation of the theory discussed will help each of these groups understand the application of the book’s methods in greater depth.
Optimal Operation of Active Distribution Networks: Congestion Management, Voltage Control and Service Restoration provides researchers and practitioners with a clear and modern understanding of how to optimize the economic, secure and resilient operation of active distribution networks. The book provides case studies, modern implementations and supporting flowcharts and code, along with current research in congestion management, service restoration and voltage control of active distribution networks. Chapter provide an overview of the active distribution network concept, present key approaches for the congestion management of active distribution networks, and cover approaches in uncertainty, coordination of DLMP, scheduled re-profiling, and more. Other sections cover real-time congestion management and service restoration of active distribution networks. - Reviews how to optimally operate active distribution networks under normal conditions and demonstrates worked solutions and contingency planning to mitigate unforeseen challenges - Provides clear guidance on optimizing congestion management, voltage control and service restoration in DER-heavy systems - Demonstrates how to implement distributed voltage control in systems using active distribution networks - Provides an extensive body of methods, associated case studies, worked solutions and implementation discussions on how to embed best practices in engineering and research workflows
Practical Design and Application of Model Predictive Control is a self-learning resource on how to design, tune and deploy an MPC using MATLAB® and Simulink®. This reference is one of the most detailed publications on how to design and tune MPC controllers. Examples presented range from double-Mass spring system, ship heading and speed control, robustness analysis through Monte-Carlo simulations, photovoltaic optimal control, and energy management of power-split and air-handling control. Readers will also learn how to embed the designed MPC controller in a real-time platform such as Arduino®. The selected problems are nonlinear and challenging, and thus serve as an excellent experimental, dynamic system to show the reader the capability of MPC. The step-by-step solutions of the problems are thoroughly documented to allow the reader to easily replicate the results. Furthermore, the MATLAB® and Simulink® codes for the solutions are available for free download. Readers can connect with the authors through the dedicated website which includes additional free resources at www.practicalmpc.com. - Illustrates how to design, tune and deploy MPC for projects in a quick manner - Demonstrates a variety of applications that are solved using MATLAB® and Simulink® - Bridges the gap in providing a number of realistic problems with very hands-on training - Provides MATLAB® and Simulink® code solutions. This includes nonlinear plant models that the reader can use for other projects and research work - Presents application problems with solutions to help reinforce the information learned