Download Free Cooperative Medium Access Control Protocol Design In Distributed Wireless Network Book in PDF and EPUB Free Download. You can read online Cooperative Medium Access Control Protocol Design In Distributed Wireless Network and write the review.

This book focuses on the design and analysis of protocols for cooperative wireless networks, especially at the medium access control (MAC) layer and for crosslayer design between the MAC layer and the physical layer. It highlights two main points that are often neglected in other books: energy-efficiency and spatial random distribution of wireless devices. Effective methods in stochastic geometry for the design and analysis of wireless networks are also explored. After providing a comprehensive review of existing studies in the literature, the authors point out the challenges that are worth further investigation. Then, they introduce several novel solutions for cooperative wireless network protocols that reduce energy consumption and address spatial random distribution of wireless nodes. For each solution, the book offers a clear system model and problem formulation, details of the proposed cooperative schemes, comprehensive performance analysis, and extensive numerical and simulation results that validate the analysis and examine the performance under various conditions. The last section of this book reveals several potential directions for the research on cooperative wireless networks that deserve future exploration. Researchers, professionals, engineers, and consultants in wireless communication and mobile networks will find this book valuable. It is also helpful for technical staff in mobile network operations, wireless equipment manufacturers, wireless communication standardization bodies, and governmental regulation agencies.
Cooperative Cognitive Radio Networks: The Complete Spectrum Cycle provides a solid understanding of the foundations of cognitive radio technology, from spectrum sensing, access, and handoff to routing, trading, and security. Written in a tutorial style with several illustrative examples, this comprehensive book: Gives an overview of cognitive radio systems and explains the different components of the spectrum cycle Features step-by-step analyses of the different algorithms and systems, supported by extensive computer simulations, figures, tables, and references Fulfills the need for a single source of information on all aspects of the spectrum cycle, including the physical, link, medium access, network, and application layers Offering a unifying view of the various approaches and methodologies, Cooperative Cognitive Radio Networks: The Complete Spectrum Cycle presents the state of the art of cognitive radio technology, addressing all phases of the spectrum access cycle.
This brief presents several enhancement modules to Multipath Transmission Control Protocol (MPTCP) in order to support stable and efficient multipath transmission with user cooperation in the Long Term Evolution (LTE) network. The text explains how these enhancements provide a stable aggregate throughput to the upper-layer applications; guarantee a steady goodput, which is the real application-layer perceived throughput; and ensure that the local traffic of the relays is not adversely affected when the relays are forwarding data for the destination. The performance of the proposed solutions is extensively evaluated using various scenarios. The simulation results demonstrate that the proposed modules can achieve a stable aggregate throughput and significantly improve the goodput by 1.5 times on average. The brief also shows that these extensions can well respect the local traffic of the relays and motivate the relay users to provide the relaying service.
Offers practitioners, researchers, and academicians with fundamental principles of cooperative communication. This book provides readers diverse findings and exposes underlying issues in the analysis, design, and optimization of wireless systems.
A self-contained guide to the state-of-the-art in cooperative communications and networking techniques for next generation cellular wireless systems, this comprehensive book provides a succinct understanding of the theory, fundamentals and techniques involved in achieving efficient cooperative wireless communications in cellular wireless networks. It consolidates the essential information, addressing both theoretical and practical aspects of cooperative communications and networking in the context of cellular design. This one-stop resource covers the basics of cooperative communications techniques for cellular systems, advanced transceiver design, relay-based cellular networks, and game-theoretic and micro-economic models for protocol design in cooperative cellular wireless networks. Details of ongoing standardization activities are also included. With contributions from experts in the field divided into five distinct sections, this easy-to-follow book delivers the background needed to develop and implement cooperative mechanisms for cellular wireless networks.
The unrelenting growth of wireless communications continues to raise new research and development problems that require unprecedented interactions among communication engineers. In particular, specialists in transmission and specialists in networks must often cross each other's boundaries. This is especially true for CDMA, an access technique that is being widely accepted as a system solution for next-generation mobile cellular systems, but it extends to other system aspects as well. Major challenges lie ahead, from the design of physical and radio access to network architecture, resource management, mobility management, and capacity and performance aspects. Several of these aspects are addressed in this volume, the fourth in the edited series on Multiaccess, Mobility and Teletraffic for Wireless Communications. It contains papers selected from MMT'99, the fifth Workshop held on these topics in October 1999 in Venezia, Italy. The focus of this workshop series is on identifying, presenting, and discussing the theoretical and implementation issues critical to the design of wireless communication networks. More specifically, these issues are examined from the viewpoint of the impact each one of them can have on the others. Specific emphasis is given to the evolutionary trends of universal wireless access and software radio. Performance improvements achieved by spectrally efficient codes and smart antennas in experimental GSM testbeds are presented. Several contributions address critical issues regarding multimedia services for Third-Generation Mobile Radio Networks ranging from high rate data transmission with CDMA technology to resource allocation for integrated Voice/WWW traffic.
Adaptive techniques play a key role in modern wireless communication systems. The concept of adaptation is emphasized in the Adaptation in Wireless Communications Series through a unified framework across all layers of the wireless protocol stack ranging from the physical layer to the application layer, and from cellular systems to next-generation wireless networks. Adaptation and Cross Layer Design in Wireless Networks is devoted to adaptation in the data link layer, network layer, and application layer. The book presents state-of-the-art adaptation techniques and methodologies, including cross-layer adaptation, joint signal processing, coding and networking, selfishness in mobile ad hoc networks, cooperative and opportunistic protocols, adaptation techniques for multimedia support, self –organizing routing, and tunable security services. It presents several new theoretical paradigms and analytical findings which are supported with various simulation and experimental results. Adaptation in wireless communications is needed in order to achieve high capacity and ubiquitous communications. The current trend in wireless communication systems is to make adaptation dependent upon the state of the relevant parameters in all layers of the system. Focusing on simplified cross layer design approaches, this volume describes advanced techniques such as adaptive resource management, adaptive modulation and coding, 4G communications, QoS, diversity combining, and energy and mobility aware MAC protocols. The first volume in the series, Adaptive Signal Processing in Wireless Communications (cat no.46012) covers adaptive signal processing at the physical layer.
This SpringerBrief offers a comprehensive review and in-depth discussion of the current research on resource management. The authors explain how to best utilize harvested energy and temporally available licensed spectrum. Throughout the brief, the primary focus is energy and spectrum harvesting sensor networks (ESHNs) including energy harvesting (EH)-powered spectrum sensing and dynamic spectrum access. To efficiently collect data through the available licensed spectrum, this brief examines the joint management of energy and spectrum. An EH-powered spectrum sensing and management scheme for Heterogeneous Spectrum Harvesting Sensor Networks (HSHSNs) is presented in this brief. The scheme dynamically schedules the data sensing and spectrum access of sensors in ESHSNs to optimize the network utility, while considering the stochastic nature of EH process, PU activities and channel conditions. This brief also provides useful insights for the practical resource management scheme design for ESHSNs and motivates a new line of thinking for future sensor networking. Professionals, researchers, and advanced-level students in electrical or computer engineering will find the content valuable.
This book discusses the use of the spectrum sharing techniques in cognitive radio technology, in order to address the problem of spectrum scarcity for future wireless communications. The authors describe a cognitive radio medium access control (MAC) protocol, with which throughput maximization has been achieved. The discussion also includes use of this MAC protocol for imperfect sensing scenarios and its effect on the performance of cognitive radio systems. The authors also discuss how energy efficiency has been maximized in this system, by applying a simple algorithm for optimizing the transmit power of the cognitive user. The study about the channel fading in the cognitive user and licensed user and power adaption policy in this scenario under peak transmit power and interference power constraint is also present in this book.
A comprehensive introduction to the basic principles, design techniques and analytical tools of wireless communications.