Download Free Cooperative Control Of Uavs For Localization Of Intermittently Emitting Mobile Targets Book in PDF and EPUB Free Download. You can read online Cooperative Control Of Uavs For Localization Of Intermittently Emitting Mobile Targets and write the review.

"Dynamics of Information Systems" presents state-of-the-art research explaining the importance of information in the evolution of a distributed or networked system. This book presents techniques for measuring the value or significance of information within the context of a system. Each chapter reveals a unique topic or perspective from experts in this exciting area of research. This volume is intended for graduate students and researchers interested in the most recent developments in information theory and dynamical systems, as well as scientists in other fields interested in the application of these principles to their own area of study.
This book features the latest theoretical results and techniques in the field of guidance, navigation, and control (GNC) of vehicles and aircraft. It covers a range of topics, including, but not limited to, intelligent computing communication and control; new methods of navigation, estimation, and tracking; control of multiple moving objects; manned and autonomous unmanned systems; guidance, navigation, and control of miniature aircraft; and sensor systems for guidance, navigation, and control. Presenting recent advances in the form of illustrations, tables, and text, it also provides detailed information of a number of the studies, to offer readers insights for their own research. In addition, the book addresses fundamental concepts and studies in the development of GNC, making it a valuable resource for both beginners and researchers wanting to further their understanding of guidance, navigation, and control.
In the era of cyber-physical systems, the area of control of complex systems has grown to be one of the hardest in terms of algorithmic design techniques and analytical tools. The 23 chapters, written by international specialists in the field, cover a variety of interests within the broader field of learning, adaptation, optimization and networked control. The editors have grouped these into the following 5 sections: "Introduction and Background on Control Theory, "Adaptive Control and Neuroscience, "Adaptive Learning Algorithms, "Cyber-Physical Systems and Cooperative Control, "Applications.The diversity of the research presented gives the reader a unique opportunity to explore a comprehensive overview of a field of great interest to control and system theorists. This book is intended for researchers and control engineers in machine learning, adaptive control, optimization and automatic control systems, including Electrical Engineers, Computer Science Engineers, Mechanical Engineers, Aerospace/Automotive Engineers, and Industrial Engineers. It could be used as a text or reference for advanced courses in complex control systems. • Collection of chapters from several well-known professors and researchers that will showcase their recent work • Presents different state-of-the-art control approaches and theory for complex systems • Gives algorithms that take into consideration the presence of modelling uncertainties, the unavailability of the model, the possibility of cooperative/non-cooperative goals and malicious attacks compromising the security of networked teams • Real system examples and figures throughout, make ideas concrete - Includes chapters from several well-known professors and researchers that showcases their recent work - Presents different state-of-the-art control approaches and theory for complex systems - Explores the presence of modelling uncertainties, the unavailability of the model, the possibility of cooperative/non-cooperative goals, and malicious attacks compromising the security of networked teams - Serves as a helpful reference for researchers and control engineers working with machine learning, adaptive control, and automatic control systems
The aim of this handbook is to summarize the recent rapidly developed real-time computing technologies, from theories to applications. This handbook benefits the readers as a full and quick technical reference with a high-level historic review of technology, detailed technical descriptions and the latest practical applications. In general, the handbook is divided into three main parts (subjected to be modified): theory, design, and application covering different but not limited to the following topics: - Real-time operating systems - Real-time scheduling - Timing analysis - Programming languages and run-time systems - Middleware systems - Design and analysis tools - Real-time aspects of wireless sensor networks - Energy aware real-time methods
This book introduces intellectual control systems and electromechanics of heterogeneous robots. The book uncovers fundamental principles of robot control and recent developments in software and hardware of robots. The book presents solutions and discusses problems of single robotic devices as well as heterogeneous robotic teams while performing technological tasks that require informational, physical or energetic interaction with human users, environment and other robots. The book considers model–algorithmic and software–hardware control of ground, water and underwater robots, unmanned aerial vehicles, as well as their embedded and attached sub-systems, including manipulators, end-effectors, sensors, actuators, etc. The book will be useful for researchers of interdisciplinary issues related to robotics, electromechanics and artificial intelligence. The book is recommended for graduate students with a major/minor in the areas of robotics and mechatronics, management in technical systems, Internet of Things, artificial intelligence, electrical engineering, mechanical engineering and computer science.
This two-volume set LNICST 357-358 constitutes the post-conference proceedings of the 11th EAI International Conference on Wireless and Satellite Services, WiSATS 2020, held in Nanjing, China, in September 2020. The 91 full papers and workshop papers were carefully reviewed and selected from 200 submissions. Part I - LNICST 357 - details original research and results of wireless and satellite technology for a smarter global communication architecture. The theme of WISATS 2020 is “Intelligent Wireless and Satellite Communications for Beyond 5G”. Part II – LNICST 358 - presents 6 workshop papers: High Speed Space Communication and Space Information Networks (HSSCSIN); Integrated Space and Onboard Networks (ISON); Intelligent Satellite Operations, Managements, and Applications (ISOMA); Intelligent Satellites in Future Space Networked System (ISFSNS); Satellite Communications, Networking and Applications (SCNA); Satellite Internet of Things; Trusted Data Sharing, Secure Communication (SIOTTDSSC).
Autonomous vehicles (AVs) have been used in military operations for more than 60 years, with torpedoes, cruise missiles, satellites, and target drones being early examples.1 They have also been widely used in the civilian sector-for example, in the disposal of explosives, for work and measurement in radioactive environments, by various offshore industries for both creating and maintaining undersea facilities, for atmospheric and undersea research, and by industry in automated and robotic manufacturing. Recent military experiences with AVs have consistently demonstrated their value in a wide range of missions, and anticipated developments of AVs hold promise for increasingly significant roles in future naval operations. Advances in AV capabilities are enabled (and limited) by progress in the technologies of computing and robotics, navigation, communications and networking, power sources and propulsion, and materials. Autonomous Vehicles in Support of Naval Operations is a forward-looking discussion of the naval operational environment and vision for the Navy and Marine Corps and of naval mission needs and potential applications and limitations of AVs. This report considers the potential of AVs for naval operations, operational needs and technology issues, and opportunities for improved operations.
Explore foundational and advanced issues in UAV cellular communications with this cutting-edge and timely new resource UAV Communications for 5G and Beyond delivers a comprehensive overview of the potential applications, networking architectures, research findings, enabling technologies, experimental measurement results, and industry standardizations for UAV communications in cellular systems. The book covers both existing LTE infrastructure, as well as future 5G-and-beyond systems. UAV Communications covers a range of topics that will be of interest to students and professionals alike. Issues of UAV detection and identification are discussed, as is the positioning of autonomous aerial vehicles. More fundamental subjects, like the necessary tradeoffs involved in UAV communication are examined in detail. The distinguished editors offer readers an opportunity to improve their ability to plan and design for the near-future, explosive growth in the number of UAVs, as well as the correspondingly demanding systems that come with them. Readers will learn about a wide variety of timely and practical UAV topics, like: Performance measurement for aerial vehicles over cellular networks, particularly with respect to existing LTE performance Inter-cell interference coordination with drones Massive multiple-input and multiple-output (MIMO) for Cellular UAV communications, including beamforming, null-steering, and the performance of forward-link C&C channels 3GPP standardization for cellular-supported UAVs, including UAV traffic requirements, channel modeling, and interference challenges Trajectory optimization for UAV communications Perfect for professional engineers and researchers working in the field of unmanned aerial vehicles, UAV Communications for 5G and Beyond also belongs on the bookshelves of students in masters and PhD programs studying the integration of UAVs into cellular communication systems.
The theory of switched systems is related to the study of hybrid systems, which has gained attention from control theorists, computer scientists, and practicing engineers. This book examines switched systems from a control-theoretic perspective, focusing on stability analysis and control synthesis of systems that combine continuous dynamics with switching events. It includes a vast bibliography and a section of technical and historical notes.