Download Free Convoy Electron Production In Heavy Ion Solid Collisions Book in PDF and EPUB Free Download. You can read online Convoy Electron Production In Heavy Ion Solid Collisions and write the review.

The properties of the sharp v vector/sub e/ approx. = v vector cusps observed in the velocity spectrum of convoy electrons (v vector/sub e/) ejected in heavy ion-solid collisions in the ion velocity range (v vector) 6 to 18 au are compared to the properties of analogous cusps observed in binary electron capture to the continuum (ECC) and electron loss to the continuum (ELC) collisions in gases. Apart from a skew toward v vector/sub e/> v vector, the v-independent convoy distributions observed are very similar to those for ELC and the cusp widths are the same in both cases. While the shape of convoy peaks is approximately independent of projectile Z, v, and of target material, yields in polycrystalline targets (C, Al, Ag, Au) exhibit a strong dependence on Z and v. Coincidence experiments in which convoy electrons are allocated according to emergent ion charge-state q/sub e/ show a surprising independence of q/sub e/, mirroring the unweighted statistical emergent charge-state fraction. Coincidence experiments of O/sup 6 +/ /sup 7 +/ /sup 8 +/ ions traversing 110 and 100 channels in Au show a strong yield suppression and a dependence of yield on the channel chosen. Interpretation of these observations, comparisons to convoy production studies using protons, and a discussion of remaining puzzles is given. The history of ECC, ELC, and wake-riding models of convoy electron production is also reviewed.
The dependence of the yield of convoy electrons emitted near the forward direction in collisions involving fast ions and thin solid targets on the emergent projectile charge state is presented and described in terms of primary electron loss events in the solid. The data include a large array of projectiles, projectile energies and charge states, as well as targets ranging in thickness from the non-equilibrium well into the equilibrium thickness region. The description presented is consistent with other experimental and theoretical results indicating that the convoy electron production is closely linked to the ELC process observed in binary ion-atom collisions, with the dominant contribution to the convoy yield stemming from excited states of the projectiles. 22 refs., 3 figs.
We begin with an overview for the benefit of participants lacking acquaintance with the subject of convoy-electron production, and continue with highlights of developments occurring since a review and a comprehensive article published in 1982. A sharp cusp in the velocity spectrum of electrons, ejected in ion-atom and ion-solid collisions, is observed when the ejected electron velocity vector v/sub e/ matches that of the emergent ion vector v in both speed and direction. In ion-atom collisions, the electrons primarily originate from capture to low-lying projectile-centered continuum states (ECC) for fast bare or nearly bare projectiles, and primarily from loss to low-lying continuum states (ELC) when loosely bound projectile electrons are available. Most investigators now agree that ECC cusps are strongly skewed toward lower velocities and exhibit full widths half maxima roughly proportional to v (neglecting sometimes strong shell effects). Convoy cusps produced in heavy ion-solid collisions at MeV/u energies are slightly skewed toward high electron velocities, but exhibit velocity-independent widths, very similar to ELC cusp widths. While the shape of the convoy peaks is approximately independent of projectile Z, velocity, and target, dependence on projectile Z as Z2 7 and energy as E−2 2. Attempts have been made to link convoy electron production to binary ECC or ELC processes, sometimes at the last layer, or alternatively to a solid-state wake-riding model, but our measured dependences of cusp shape and yield on heavy projectile charge state q and energy are inconsistent with available theories. These wake-riding theories seek to explain the origin of convoy electrons in terms of electrons trapped into an oscillatory electron density polarization potential trailing each projectile, which are then liberated at the surface.
The term convoy electron refers to those electrons ejected in fast ion-atom and ion-solid collisions closely matched in vector velocity to that of the incident heavy particles responsible for their ejection. Similarities and differences among electrons ejected into such states through binary electron capture to continuum and electron loss to continuum processes in single ion-atom encounters are compared and contrasted to more complex ejection processes occurring in solid targets. Puzzles posed by the apparent strong projectile Z dependence but weak emergent ion charge dependence of the yield in the case of solid targets are reviewed. Very recent progress in resolving these puzzles has been made by recent observations that the apparent mean free path for electron scattering out of the forward direction within the target is observed to be an order of magnitude greater than that for free electrons of equal velocity provided the projectile charge is high. 13 references, 2 figures, 1 table.
A sharp cusp in the velocity spectrum of electrons, ejected in ion-atom and ion-solid collisions, is observed when the ejected electron velocity vector v/sub e/ matches that of the emergent ion vector v/sub p/ in both speed and direction. In ion-atom collisions, the electrons originate from capture to low-lying, projectile-centered continuum states (ECC) for fast bare or nearly bare projectiles, and from loss to those low-lying continuum states (ELC) when loosely bound projectile electrons are available. Most investigators now agree that ECC cusps are strongly skewed toward lower velocities, and exhibit full widths half maxima roughly proportional to v/sub p/ (neglecting target-shell effects, which are sometimes strong). A close examination of recent ELC data shows that ELC cusps are instead nearly symmetric, with widths nearly independent on v/sub p/ in the velocity range 6 to 18 a.u., a result only recently predicted by theory. Convoy electron cusps produced in heavy ion-solid collisions at MeV/u energies exhibit approximately velocity-independent widths very similar to ELC cusp widths. While the shape of the convoy peaks is approximately independent of projectile Z, velocity, and of target material, it is found that the yields in polycrystalline targets exhibit a strong dependence on projectile Z and velocity. While attempts have been made to link convoy electron production to binary ECC or ELC processes, sometimes at the last layer, or alternatively to a solid-state wake-riding model, our measured dependences of cusp shape and yield on projectile charge state and energy are inconsistent with the predictions of available theories. 10 references, 8 figures, 1 table.
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
For 75 years the stopping of energetic ions in matter has been a subject of great theoretical and experimental interest. The theoretical treatment of the stopping of ions in matter is largely due to the work of Bohr, 1-3 Bethe,4-6 Bloch,7. s and Lindhard,9-12 and it has been reviewed by Bohr,3 Fano,13 17 20 Jackson,14 Sigmund,15 Ahlen,16 and Ziegler et al. - Soon after the discovery of energetic particle emission from radioactive materials, there was interest in how these corpuscles were slowed down in traversing matter. In 1900, Marie Curie stated 21 the hypothesis that Hies rayons alpha sont des projectiles materiels susceptibles de perdre de leur vitesse en travers ant la matiere." Early attempts to evaluate this were incon clusive for there was not yet an accurate proposed model of the atom. Enough experimental evidence was collected in the next decade to make stopping power theory one of the central concerns of those attempting to develop an atomic model. J.J. Thomson, director of the prestigious Cavendish Laboratory, and Niels Bohr, a fresh postdoctoral scientist at Rutherford's Manchester Laboratory, both published almost simultaneously22. 23 an analysis of the stopping of charged particles by matter, and each contained many of their divergent ideas on the model of an atom. Thomson ignored in his paper the Rutherford alpha-particle scattering 24 experiment of a year before. But the nuclear atom with a heavy positively 25 charged core was the basis of Bohr's ideas.
Electron EM reviews the theoretical and experimental work of the last 30 years on continuous electron emission in energetic ion-atom collisions. High incident energies for which the projectile is faster than the mean orbital velocity of the active electron are considered. Emphasis is placed on the interpretation of ionization mechanisms. They are interpreted in terms of Coulomb centers associated with the projectile and target nuclear fields which strongly interact with the outgoing electron. General properties of the two-center electron emission are analyzed. Particular attention is given to screening effects. A brief overview of multiple ionization processes is also presented. The survey concludes with a complete compilation of experimental studies of ionization cross sections.