Download Free Convex Integration Theory Book in PDF and EPUB Free Download. You can read online Convex Integration Theory and write the review.

§1. Historical Remarks Convex Integration theory, first introduced by M. Gromov [17], is one of three general methods in immersion-theoretic topology for solving a broad range of problems in geometry and topology. The other methods are: (i) Removal of Singularities, introduced by M. Gromov and Y. Eliashberg [8]; (ii) the covering homotopy method which, following M. Gromov's thesis [16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale [36] who proved a crucial covering homotopy result in order to solve the classification problem for immersions of spheres in Euclidean space. These general methods are not linearly related in the sense that succes sive methods subsumed the previous methods. Each method has its own distinct foundation, based on an independent geometrical or analytical insight. Conse quently, each method has a range of applications to problems in topology that are best suited to its particular insight. For example, a distinguishing feature of Convex Integration theory is that it applies to solve closed relations in jet spaces, including certain general classes of underdetermined non-linear systems of par tial differential equations. As a case of interest, the Nash-Kuiper Cl-isometrie immersion theorem ean be reformulated and proved using Convex Integration theory (cf. Gromov [18]). No such results on closed relations in jet spaees can be proved by means of the other two methods.
§1. Historical Remarks Convex Integration theory, ?rst introduced by M. Gromov [17], is one of three general methods in immersion-theoretic topology for solving a broad range of problems in geometry and topology. The other methods are: (i) Removal of Singularities, introduced by M. Gromov and Y. Eliashberg [8]; (ii) the covering homotopy method which, following M. Gromov’s thesis [16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale [36] who proved a crucial covering homotopy result in order to solve the classi?cation problem for immersions of spheres in Euclidean space. These general methods are not linearly related in the sense that succ- sive methods subsumed the previous methods. Each method has its own distinct foundation, based on an independent geometrical or analytical insight. Con- quently, each method has a range of applications to problems in topology that are best suited to its particular insight. For example, a distinguishing feature of ConvexIntegrationtheoryisthatitappliestosolveclosed relationsinjetspaces, including certain general classes of underdetermined non-linear systems of par- 1 tial di?erential equations. As a case of interest, the Nash-Kuiper C -isometric immersion theorem can be reformulated and proved using Convex Integration theory (cf. Gromov [18]). No such results on closed relations in jet spaces can be proved by means of the other two methods. On the other hand, many classical results in immersion-theoretic topology, such as the classi?cation of immersions, are provable by all three methods.
In differential geometry and topology one often deals with systems of partial differential equations as well as partial differential inequalities that have infinitely many solutions whatever boundary conditions are imposed. It was discovered in the 1950s that the solvability of differential relations (i.e., equations and inequalities) of this kind can often be reduced to a problem of a purely homotopy-theoretic nature. One says in this case that the corresponding differential relation satisfies the $h$-principle. Two famous examples of the $h$-principle, the Nash–Kuiper $C^1$-isometric embedding theory in Riemannian geometry and the Smale–Hirsch immersion theory in differential topology, were later transformed by Gromov into powerful general methods for establishing the $h$-principle. The authors cover two main methods for proving the $h$-principle: holonomic approximation and convex integration. The reader will find that, with a few notable exceptions, most instances of the $h$-principle can be treated by the methods considered here. A special emphasis is made on applications to symplectic and contact geometry. The present book is the first broadly accessible exposition of the theory and its applications, making it an excellent text for a graduate course on geometric methods for solving partial differential equations and inequalities. Geometers, topologists, and analysts will also find much value in this very readable exposition of an important and remarkable topic. This second edition of the book is significantly revised and expanded to almost twice of the original size. The most significant addition to the original book is the new part devoted to the method of wrinkling and its applications. Several other chapters (e.g., on multivalued holonomic approximation and foliations) are either added or completely rewritten.
This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.
Introduction Differential relations and $h$-principles The $h$-principle for open, invariant relations Convex integration theory Bibliography
The notion of homotopy principle or $h$-principle is one of the key concepts in an elegant language developed by Gromov to deal with a host of questions in geometry and topology. Roughly speaking, for a certain differential geometric problem to satisfy the $h$-principle is equivalent to saying that a solution to the problem exists whenever certain obvious topological obstructions vanish. The foundational examples for applications of Gromov's ideas include (i) Hirsch-Smale immersion theory, (ii) Nash-Kuiper $C^1$-isometric immersion theory, (iii) existence of symplectic and contact structures on open manifolds. Gromov has developed several powerful methods that allow one to prove $h$-principles. These notes, based on lectures given in the Graduiertenkolleg of Leipzig University, present two such methods which are strong enough to deal with applications (i) and (iii).
This book applies the convex integration method to multi-dimensional compressible Euler equations in the barotropic case as well as the full system with temperature. The convex integration technique, originally developed in the context of differential inclusions, was applied in the groundbreaking work of De Lellis and Székelyhidi to the incompressible Euler equations, leading to infinitely many solutions. This theory was later refined to prove non-uniqueness of solutions of the compressible Euler system, too. These non-uniqueness results all use an ansatz which reduces the equations to a kind of incompressible system to which a slight modification of the incompressible theory can be applied. This book presents, for the first time, a generalization of the De Lellis–Székelyhidi approach to the setting of compressible Euler equations. The structure of this book is as follows: after providing an accessible introduction to the subject, including the essentials of hyperbolic conservation laws, the idea of convex integration in the compressible framework is developed. The main result proves that under a certain assumption there exist infinitely many solutions to an abstract initial boundary value problem for the Euler system. Next some applications of this theorem are discussed, in particular concerning the Riemann problem. Finally there is a survey of some related results. This self-contained book is suitable for both beginners in the field of hyperbolic conservation laws as well as for advanced readers who already know about convex integration in the incompressible framework.
This book covers fundamental techniques in the theory of -imbeddings and -immersions, emphasizing clear intuitive understanding and containing many figures and diagrams. Adachi starts with an introduction to the work of Whitney and of Haefliger on -imbeddings and -manifolds. The Smale-Hirsch theorem is presented as a generalization of the classification of -imbeddings by isotopy and is extended by Gromov's work on the subject, including Gromov's convex integration theory. Finally, as an application of Gromov's work, the author introduces Haefliger's classification theorem of foliations on open manifolds. Also described here is the Adachi's work with Landweber on the integrability of almost complex structures on open manifolds. This book would be an excellent text for upper-division undergraduate or graduate courses.Nothing provided
This book provides a self-contained introduction to convex geometry in Euclidean space. After covering the basic concepts and results, it develops Brunn–Minkowski theory, with an exposition of mixed volumes, the Brunn–Minkowski inequality, and some of its consequences, including the isoperimetric inequality. Further central topics are then treated, such as surface area measures, projection functions, zonoids, and geometric valuations. Finally, an introduction to integral-geometric formulas in Euclidean space is provided. The numerous exercises and the supplementary material at the end of each section form an essential part of the book. Convexity is an elementary and natural concept. It plays a key role in many mathematical fields, including functional analysis, optimization, probability theory, and stochastic geometry. Paving the way to the more advanced and specialized literature, the material will be accessible to students in the third year and can be covered in one semester.