Download Free Converging Clinical And Engineering Research On Neurorehabilitation Book in PDF and EPUB Free Download. You can read online Converging Clinical And Engineering Research On Neurorehabilitation and write the review.

The book reports on advanced topics in the areas of neurorehabilitation research and practice. It focuses on new methods for interfacing the human nervous system with electronic and mechatronic systems to restore or compensate impaired neural functions. Importantly, the book merges different perspectives, such as the clinical, neurophysiological, and bioengineering ones, to promote, feed and encourage collaborations between clinicians, neuroscientists and engineers. Based on the 2020 International Conference on Neurorehabilitation (ICNR 2020) held online on October 13-16, 2020, this book covers various aspects of neurorehabilitation research and practice, including new insights into biomechanics, brain physiology, neuroplasticity, and brain damages and diseases, as well as innovative methods and technologies for studying and/or recovering brain function, from data mining to interface technologies and neuroprosthetics. In this way, it offers a concise, yet comprehensive reference guide to neurosurgeons, rehabilitation physicians, neurologists, and bioengineers. Moreover, by highlighting current challenges in understanding brain diseases as well as in the available technologies and their implementation, the book is also expected to foster new collaborations between the different groups, thus stimulating new ideas and research directions.
The book reports on advanced topics in the areas of neurorehabilitation research and practice. It focuses on new methods for interfacing the human nervous system with electronic and mechatronic systems to restore or compensate impaired neural functions. Importantly, the book merges different perspectives, such as the clinical, neurophysiological, and bioengineering ones, to promote, feed and encourage collaborations between clinicians, neuroscientists and engineers. Based on the 2016 International Conference on Neurorehabilitation (ICNR 2016) held on October 18-21, 2016, in Segovia, Spain, this book covers various aspects of neurorehabilitation research and practice, including new insights into biomechanics, brain physiology, neuroplasticity, and brain damages and diseases, as well as innovative methods and technologies for studying and/or recovering brain function, from data mining to interface technologies and neuroprosthetics. In this way, it offers a concise, yet comprehensive reference guide to neurosurgeons, rehabilitation physicians, neurologists, and bioengineers. Moreover, by highlighting current challenges in understanding brain diseases as well as in the available technologies and their implementation, the book is also expected to foster new collaborations between the different groups, thus stimulating new ideas and research directions.
Restoring human motor and cognitive function has been a fascinating research area during the last century. Interfacing the human nervous system with electro-mechanical rehabilitation machines is facing its crucial passage from research to clinical practice, enhancing the potentiality of therapists, clinicians and researchers to rehabilitate, diagnose and generate knowledge. The 2012 International Conference on Neurorehabilitation (ICNR2012) brings together researchers and students from the fields of Clinical Rehabilitation, Applied Neurophysiology and Biomedical Engineering, covering a wide range of research topics: · Clinical Impact of Technology · Brain-Computer Interface in Rehabilitation · Neuromotor & Neurosensory modeling and processing · Biomechanics in Rehabilitation · Neural Prostheses in Rehabilitation · Neuro-Robotics in Rehabilitation · Neuromodulation This Proceedings book includes general contributions (2-page extended abstracts) from oral and poster sessions, as well as from special sessions. A section is also dedicated to pre-post conference workshops, including invited contributions from internationally recognized researchers. A selection of most relevant papers have been considered for publication in international journals (e.g. JNER, JACCES, ...)., therefore they will appear soon in their extended versions in Special Issues. These Proceedings also contain brief descriptions of keynote lectures from invited world-class professors, and a number of thematic round tables covering technological and institutional issues.
Neuroprosthetics is a fast-growing area that brings together the fields of biomedical engineering and neuroscience as a means to interface the neural system directly to prostheses. Advancing research and applications in this field can assist in successfully restoring motor, sensory, and cognitive functions. Emerging Theory and Practice in Neuroprosthetics brings together the most up-to-date research surrounding neuroprosthetics advances and applications. Presenting several new results, concepts, and further developments in the area of neuroprosthetics, this book is an essential publication for researchers, upper-level students, engineers, and medical practitioners.
Brain–Computer Interfaces Handbook: Technological and Theoretical Advances provides a tutorial and an overview of the rich and multi-faceted world of Brain–Computer Interfaces (BCIs). The authors supply readers with a contemporary presentation of fundamentals, theories, and diverse applications of BCI, creating a valuable resource for anyone involved with the improvement of people’s lives by replacing, restoring, improving, supplementing or enhancing natural output from the central nervous system. It is a useful guide for readers interested in understanding how neural bases for cognitive and sensory functions, such as seeing, hearing, and remembering, relate to real-world technologies. More precisely, this handbook details clinical, therapeutic and human-computer interfaces applications of BCI and various aspects of human cognition and behavior such as perception, affect, and action. It overviews the different methods and techniques used in acquiring and pre-processing brain signals, extracting features, and classifying users’ mental states and intentions. Various theories, models, and empirical findings regarding the ways in which the human brain interfaces with external systems and environments using BCI are also explored. The handbook concludes by engaging ethical considerations, open questions, and challenges that continue to face brain–computer interface research. Features an in-depth look at the different methods and techniques used in acquiring and pre-processing brain signals, extracting features, and classifying the user's intention Covers various theories, models, and empirical findings regarding ways in which the human brain can interface with the systems or external environments Presents applications of BCI technology to understand various aspects of human cognition and behavior such as perception, affect, action, and more Includes clinical trials and individual case studies of the experimental therapeutic applications of BCI Provides human factors and human-computer interface concerns in the design, development, and evaluation of BCIs Overall, this handbook provides a synopsis of key technological and theoretical advances that are directly applicable to brain–computer interfacing technologies and can be readily understood and applied by individuals with no formal training in BCI research and development.
The application of proper ethical systems and education programs is a vital concern in the medical industry. When healthcare professionals are held to the highest moral and training standards, patient care is improved. Healthcare Ethics and Training: Concepts, Methodologies, Tools, and Applications is a comprehensive source of academic research material on methods and techniques for implementing ethical standards and effective education initiatives in clinical settings. Highlighting pivotal perspectives on topics such as e-health, organizational behavior, and patient rights, this multi-volume work is ideally designed for practitioners, upper-level students, professionals, researchers, and academics interested in the latest developments within the healthcare industry.
As modern technologies continue to develop and evolve, the ability of users to interface with new systems becomes a paramount concern. Research into new ways for humans to make use of advanced computers and other such technologies is necessary to fully realize the potential of 21st century tools. Human-Computer Interaction: Concepts, Methodologies, Tools, and Applications gathers research on user interfaces for advanced technologies and how these interfaces can facilitate new developments in the fields of robotics, assistive technologies, and computational intelligence. This four-volume reference contains cutting-edge research for computer scientists; faculty and students of robotics, digital science, and networked communications; and clinicians invested in assistive technologies. This seminal reference work includes chapters on topics pertaining to system usability, interactive design, mobile interfaces, virtual worlds, and more.
This Special Issue covers several recent advances in robotic devices applied to motor rehabilitation and assistance. The Special Issue has collected eight outstanding papers covering different aspects of assistance robotics and biosensors. The selected contributions cover several main topics related to assistance robotics, from the control of myoelectric prostheses to the rehabilitation and assistance of the lower and upper limbs.
This book (vol. 2) presents the proceedings of the IUPESM World Congress on Biomedical Engineering and Medical Physics, a triennially organized joint meeting of medical physicists, biomedical engineers and adjoining health care professionals. Besides the purely scientific and technological topics, the 2018 Congress will also focus on other aspects of professional involvement in health care, such as education and training, accreditation and certification, health technology assessment and patient safety. The IUPESM meeting is an important forum for medical physicists and biomedical engineers in medicine and healthcare learn and share knowledge, and discuss the latest research outcomes and technological advancements as well as new ideas in both medical physics and biomedical engineering field.
The current trend towards digitalization of human-centred engineering processes in conjunction with advances in (bio-)mechanistic modelling, high-performance computing, artificial intelligence (AI) and sensor technology leads to unprecedented transformation potentials in medical, product and human factors engineering for the enhancement of human-technology interaction as well as medical treatment outcomes. Biomechanical simulations hold high potential by revealing the processes and inner strain conditions of the human body. For reliable simulation results, a model suitable for the application and a way to measure/estimate/predict the human motion behaviour and the interaction with the environment and/or interacting technology are necessary. In this context we refer to a human digital twin as an extension and connection of participant/person-specific biomechanical human models with data streams from clinical observation, operational use of technology or daily life. Each human digital twin is an instance digitally representing a specific person in healthy or pathological state suitable for the specified application.