Download Free Convergence Problems Of Orthogonal Series Book in PDF and EPUB Free Download. You can read online Convergence Problems Of Orthogonal Series and write the review.

Convergence Problems of Orthogonal Series deals with the theory of convergence and summation of the general orthogonal series in relation to the general theory and classical expansions. The book reviews orthogonality, orthogonalization, series of orthogonal functions, complete orthogonal systems, and the Riesz-Fisher theorem. The text examines Jacobi polynomials, Haar's orthogonal system, and relations to the theory of probability using Rademacher's and Walsh's orthogonal systems. The book also investigates the convergence behavior of orthogonal series by methods belonging to the general theory of series. The text explains some Tauberian theorems and the classical Abel transform of the partial sums of a series which the investigator can use in the theory of orthogonal series. The book examines the importance of the Lebesgue functions for convergence problems, the generalization of the Walsh series, the order of magnitude of the Lebesgue functions, and the Lebesgue functions of the Cesaro summation. The text also deals with classical convergence problems in which general orthogonal series have limited significance as orthogonal expansions react upon the structural properties of the expanded function. This reaction happens under special assumptions concerning the orthogonal system in whose functions the expansion proceeds. The book can prove beneficial to mathematicians, students, or professor of calculus and advanced mathematics.
"Investigate various forms of convergence of Fourier series in general orthonormal systems as well as certain problems in the theory of bases" -- Introduction.
The underlying theme of this monograph is that the fundamental simplicity of the properties of orthogonal functions and the developments in series associated with them makes those functions important areas of study for students of both pure and applied mathematics. The book starts with Fourier series and goes on to Legendre polynomials and Bessel functions. Jackson considers a variety of boundary value problems using Fourier series and Laplace's equation. Chapter VI is an overview of Pearson frequency functions. Chapters on orthogonal, Jacobi, Hermite, and Laguerre functions follow. The final chapter deals with convergence. There is a set of exercises and a bibliography. For the reading of most of the book, no specific preparation is required beyond a first course in the calculus. A certain amount of “mathematical maturity” is presupposed or should be acquired in the course of the reading.
This book presents a systematic course on general orthogonal polynomials and Fourier series in orthogonal polynomials. It consists of six chapters. Chapter 1 deals in essence with standard results from the university course on the function theory of a real variable and on functional analysis. Chapter 2 contains the classical results about the orthogonal polynomials (some properties, classical Jacobi polynomials and the criteria of boundedness).The main subject of the book is Fourier series in general orthogonal polynomials. Chapters 3 and 4 are devoted to some results in this topic (classical results about convergence and summability of Fourier series in L2μ; summability almost everywhere by the Cesaro means and the Poisson-Abel method for Fourier polynomial series are the subject of Chapters 4 and 5).The last chapter contains some estimates regarding the generalized shift operator and the generalized product formula, associated with general orthogonal polynomials.The starting point of the technique in Chapters 4 and 5 is the representations of bilinear and trilinear forms obtained by the author. The results obtained in these two chapters are new ones.Chapters 2 and 3 (and part of Chapter 1) will be useful to postgraduate students, and one can choose them for treatment.This book is intended for researchers (mathematicians, mechanicians and physicists) whose work involves function theory, functional analysis, harmonic analysis and approximation theory.