Download Free Conventional Concentrically Braced Frames With I Shape Braces And Bolted Brace Connections Book in PDF and EPUB Free Download. You can read online Conventional Concentrically Braced Frames With I Shape Braces And Bolted Brace Connections and write the review.

"In low and moderate seismic regions, low-ductility concentrically braced frames (CBFs) are widely used as the seismic force-resisting system for steel structures. Unlike high-ductility CBFs, the capacity-based design principle and additional seismic detailing are not required for such systems, which are referred to as conventional CBFs (CCBFs) in this study. In CCBFs, the brace-to-gusset connections are inherently weaker than the adjoining gusset plates and braces when loaded in tension. This occurs because both the gusset plates and the braces are most often selected based on their respective compressive buckling resistances, and hence, typically have a much greater resistance in tension. As such, brace connections are critical for the seismic behaviour and collapse prevention performance of CCBFs. However, brace connections have received little research attention because they are usually assumed to remain elastic in most capacity-based designs, and as such, their inelastic behaviour is not fully understood at a fundamental level. This is reflected in the different code provisions: in Canada, the seismic design force must be amplified by 1.5 for brace connections in CCBFs unless these connections are proven to be ductile as per CSA S16-19; in New Zealand, for connections in CCBFs, a structural performance factor of 1.0 is required, compared with 0.9 for structural members, which effectively increases the seismic design force demand on connections as per NZS 3404; no analogous requirements exist for CCBFs in the USA as per ANSI/AISC 341-16 or in Europe as per Eurocode 8.The inelastic behaviour of and the seismic deformation demand on CCBF brace connections were studied through a two-level numerical simulation approach, which is presented in this thesis. The bolted flange plate connection of the I-shape brace, which is a common design choice for CCBFs, was selected as the subject of this study.At the connection level, a high-fidelity finite element (FE) simulation procedure was developed for the bolted flange plate connection and validated against laboratory test results. The force transfer mechanism within the branches of the connection was characterized. Subsequently, a parametric study based on the validated numerical simulation procedure was carried out. Three key design parameters, namely, the gusset plate thickness, the flange lap plate thickness, and the web lap plate thickness, were varied to study their effects on both the compressive and tensile behaviour of the brace and the connection assembly. Various deformation mechanisms and failure modes were revealed under both compression and tension. Design recommendations are proposed with regards to attaining better deformation capacity.Based on the knowledge gained from the high-fidelity numerical simulations, a computationally efficient component-based modeling method was developed for the bolted brace connection. The connection was discretized into individual components, and modeled by means of organized springs, which each simulate the behaviour of a component. After validation against experimental test results, the component-based connection model was incorporated into a system-level numerical model for a series of prototype CCBFs. Through nonlinear static and dynamic structural analyses, the seismic behaviour and collapse prevention performance of CCBFs were studied. When loaded in tension, the brace connections deformed much more than the brace, and amplifying the design force by 1.5 was effective in reducing the seismic deformation demand on brace connections. In some cases, a secondary seismic force-resisting mechanism developed and prevented the system from collapse after the primary seismic force-resisting mechanism had failed"--
This book comprises the proceedings of the Annual Conference of the Canadian Society of Civil Engineering 2022. The contents of this volume focus on specialty conferences in construction, environmental, hydrotechnical, materials, structures, transportation engineering, etc. This volume will prove a valuable resource for those in academia and industry.
This updated version of the first edition examines the strength and deformation behaviour of riveted and bolted structural connectors and the joints in which they are used.
Surveys the leading methods for connecting structural steel components, covering state-of-the-art techniques and materials, and includes new information on welding and connections. Hundreds of detailed examples, photographs, and illustrations are found throughout this handbook. --from publisher description.
This book is the Proceedings of a State-of-the-Art Workshop on Connenctions and the Behaviour, Strength and Design of Steel Structures held at Laboratoire de Mecanique et Technologie, Ecole Normale, Cachan France from 25th to 27th May 1987. It contains the papers presented at the above proceedings and is split into eight main sections covering: Local Analysis of Joints, Mathematical Models, Classification, Frame Analysis, Frame Stability and Simplified Methods, Design Requirements, Data Base Organisation, Research and Development Needs. With papers from 50 international contributors this text will provide essential reading for all those involved with steel structures.
Behaviour of Steel Structures in Seismic Areas is a comprehensive overview of recent developments in the field of seismic resistant steel structures. It comprises a collection of papers presented at the seventh International Specialty Conference STESSA 2012 (Santiago, Chile, 9-11 January 2012), and includes the state-of-the-art in both theore
This book is intended for classroom teaching in architectural and civil engineering at the graduate and undergraduate levels. Although it has been developed from lecture notes given in structural steel design, it can be useful to practicing engineers. Many of the examples presented in this book are drawn from the field of design of structures. Design of Steel Structures can be used for one or two semesters of three hours each on the undergraduate level. For a two-semester curriculum, Chapters 1 through 8 can be used during the first semester. Heavy emphasis should be placed on Chapters 1 through 5, giving the student a brief exposure to the consideration of wind and earthquakes in the design of buildings. With the new federal requirements vis a vis wind and earthquake hazards, it is beneficial to the student to have some under standing of the underlying concepts in this field. In addition to the class lectures, the instructor should require the student to submit a term project that includes the complete structural design of a multi-story building using standard design procedures as specified by AISC Specifications. Thus, the use of the AISC Steel Construction Manual is a must in teaching this course. In the second semester, Chapters 9 through 13 should be covered. At the undergraduate level, Chapters 11 through 13 should be used on a limited basis, leaving the student more time to concentrate on composite construction and built-up girders.