Download Free Controlling Floods And Droughts Through Underground Storage From Concept To Pilot Implementation In The Ganges River Basin Book in PDF and EPUB Free Download. You can read online Controlling Floods And Droughts Through Underground Storage From Concept To Pilot Implementation In The Ganges River Basin and write the review.

The concept of ‘Underground Taming of Floods for Irrigation’ (UTFI) is introduced as an approach for co-managing floods and droughts at the river basin scale. UTFI involves strategic recharge of aquifers upstream during periods of high flow, thereby preventing local and downstream flooding, and simultaneously providing additional groundwater for irrigation during the dry season for livelihood improvement. Three key stages in moving UTFI from the concept stage to mainstream implementation are discussed. An analysis of prospects in the Ganges River Basin are revealed from the earliest stage of mapping of suitability at the watershed level through to the latest stages of identifying and setting up the first pilot trial in the Upper Ganges, where a comprehensive evaluation is under way. If UTFI can be verified then there is enormous potential to apply it to address climate change adaptation/mitigation and disaster risk reduction challenges globally.
Floods and droughts are climate extremes that account for more than 80% of people affected by natural disasters worldwide. Both catastrophes co-exist in many river basins, for example, the Mun River Basin in Thailand, which is selected as the study area. Approximately 90% of rice cultivation here is rain-fed, and that results in the lowest yields in the country, making many farmers persist in poverty. This study aims to assess floods and droughts and their impacts on agriculture at the basin scale. For flooding, the hydrologic and hydraulic models were developed to produce the first completed flood hazard maps at the Mun River Basin. Droughts in the basin were determined by the proposed drought risk assessment scheme that combines all three key components (hazard, exposure, and vulnerability). Subsequently, the study attempts to tackle both floods and droughts simultaneously and sustainably by using integrated measures and strategies. If the problems caused by flood and drought climate extremes are solved, this will ensure adequate food availability and alleviate poverty in the basin. Furthermore, the study shows that a holistic approach to simultaneously solving both problems is efficient as most water will be utilized to benefit agriculture, the primary sector that feeds a growing population.
Although the Ganges River Basin (GRB) has abundant water resources, the seasonal monsoon causes a mismatch in water supply and demand, which creates severe water-related challenges for the people living in the basin, the rapidly growing economy and the environment. Addressing these increasing challenges will depend on how people manage the basin’s groundwater resources, on which the reliance will increase further due to limited prospects for additional surface storage development. This report assesses the potential of the Ganges Water Machine (GWM), a concept proposed 40 years ago, to meet the increasing water demand through groundwater, and mitigate the impacts of floods and droughts. The GWM provides additional subsurface storage (SSS) through the accelerated use of groundwater prior to the onset of the monsoon season, and subsequent recharging of this SSS through monsoon surface runoff. It was identified that there is potential to enhance SSS through managed aquifer recharge during the monsoon season, and to use solar energy for groundwater pumping, which is financially more viable than using diesel as practiced in many areas at present. The report further explores the limitations associated with water quality issues for pumping and recharge in the GRB, and discusses other related challenges, including availability of land for recharge structures and people’s willingness to increase the cropping intensity beyond the present level.
This book is a hard copy of the editorial and all the papers in a Special Issue of the peer-reviewed open access journal ‘Water’ on the theme ‘Managed Aquifer Recharge for Water Resilience’. Managed aquifer recharge (MAR) is the purposeful recharge of water to aquifers for subsequent recovery or environmental benefit. MAR is increasingly used to make water supplies resilient to drought, climate change and deteriorating water quality, and to protect ecosystems from declining groundwater levels. Global MAR has grown exponentially to 10 cu.km/year and will increase ten-fold within a few decades. Well informed hydrogeologists, engineers and water quality scientists are needed to ensure that this investment is effective in meeting increasingly pressing needs. This compilation contains lessons from many examples of existing projects, including several national and continental summaries. It also addresses the elements essential for identifying and advancing projects such as mapping aquifer suitability and opportunities, policy matters, operational issues, and some innovations in MAR methods and monitoring. This collection exemplifies the state of progress in the science and practice of MAR and is intended to be useful, at least to water managers, water utilities, agricultural water users and urban planners, to facilitate water resilience through new MAR projects.
Situating a comprehensive microbehavioral analysis of the economics of climate change within a discussion of the most pressing global climate change issues and policy negotiations, the Handbook of Behavioral Economics and Climate Change is a timely collection of new research on the behaviors of economic agents that are essential to an exposition of climate change economics and policy making.
Environmental flows (EF) are an important component of Goal 6 (the ‘water goal’) of the Sustainable Development Goals (SDGs). Yet, many countries still do not have well-defined criteria on how to define EF. In this study, we bring together the International Water Management Institute’s (IWMI’s) expertise and previous research in this area to develop a new methodology to quantify EF at a global scale. EF are developed for grids (0.1 degree spatial resolution) for different levels of health (defined as environmental management classes [EMCs]) of river sections. Additionally, EF have been separated into surface water and groundwater components, which also helps in developing sustainable groundwater abstraction (SGWA) limits. An online tool has been developed to calculate EF and SGWA in any area of interest.