Download Free Controlling And Understanding Electro Chemo Mechanical Properties Of Layered Cuprate Thin Films Book in PDF and EPUB Free Download. You can read online Controlling And Understanding Electro Chemo Mechanical Properties Of Layered Cuprate Thin Films and write the review.

Surface exchange kinetics are a key indicator of performance for electrochemical devices including solid oxide fuel cells. Due to broad flexibility in dopant selection and concentration, mixed ionic-electronic conducting (MIEC) ABO3 perovskite oxides have been extensively explored as model systems to understand oxygen surface exchange kinetics for solid oxide fuel cell (SOFC) electrodes. Traditionally, transport properties are examined as functions of type and concentration of aliovalent cations, requiring multiple samples, resulting in changes in multiple characteristics and properties, often unintended. Moreover, the perovskite oxides generally accommodate only oxygen vacancies and not interstitials. In this study, the type and concentration of ionic defects (oxygen vacancies vs interstitials) in MIEC layered cuprates (La1.85Ce0.15CuO4) are systematically controlled, without change in cation doping or electronic conductivity, by electrochemical pumping of oxygen with and are analyzed through chemical capacitance, defect chemical modelling, and electrical conductivity. Oxygen surface exchange kinetics derived from electrochemical impedance spectra show a strong correlation with oxygen defect concentration increase, for both vacancies and interstitials. Key thermodynamic parameters, such as band gap energy (0.54±0.10 eV) and anion Frenkel enthalpy (0.618±0.074 eV) are derived. Evidence of oxygen vacancy ordering is observed from chemical capacitance analysis. Layered cuprates have multiple crystalline structure types – namely T, T*, and T’ – which share similar chemistry, but are known to have different properties, such as oxygen diffusivities. Control of structure is systematically studied by using different substrates and seed layers, and by electrochemical pumping of oxygen. A dynamic and reversible structural change in layered cuprate thin films is discovered, for the first time, by oxygen nonstoichiometry control. Oxygen diffusivities of T and T’ structures with the same cation chemistry (La2CuO4) are measured, for the first time, by oxygen isotope exchange experiment. The T-structured layered cuprate shows faster oxygen diffusion, but with higher activation compared to the T’ variant. On the other hand, faster oxygen surface exchange kinetics exhibited by the T’- as compared to the T- type structured cuprate, as measured by thin film conductivity relaxation, is attributed to a lower enthalpy of oxygen interstitial formation.
This book presents the majority of the contributions to the Tenth German-Vietnamese Seminar on Physics and Engineering (GVS10) that took place in the Gustav- Stresemann-Institut (GSI) in Bonn from June 6 to June 9, 2007. In the focus of these studies are the preparation and basic properties of new material systems, related investigation methods, and practical applications. Accordingly the sections in this book are entitled electrons: transport and confinement, low-dimensional systems, magnetism, oxidic materials, organic films, new materials, and methods. The series of German-Vietnamese seminars was initiated and sponsored by the Gottlieb Daimler- and Karl Benz -Foundation since 1998 and took place alt- nately in both countries. These bilateral meetings brought together top-notch senior and junior Vietnamese scientists with German Scientists and stimulated many contacts and co-operations. Under the general title “Physics and Engine- ing” the programs covered, in the form of keynote-lectures, oral presentations and posters, experimental and theoretical cutting-edge material-physics oriented topics. The majority of the contributions was dealing with modern topics of material science, particularly nanoscience, which is a research field of high importance also in Vietnam. Modern material science allows a quick transfer of research results to technical applications, which is very useful for fast developing countries like Vietnam. On the other hand, the seminars took profit from the strong cro- fertilization of the different disciplines of physics. This book is dedicated to the tenth anniversary of the seminars and nicely shows the scientific progress in Vietnam and the competitive level reached.
Throughout the history of materials science and physics, few topics have captured as much interest as the phenomenon of superconductivity (SPC), discovered in 1911. Perhaps this is because of the intriguing interpretation of the phenomenon, which remains controversial, or for the secret hope of being able to synthesize a material with a critical superconductive transition temperature (TC) high enough to revolutionize the sector of energy generation and transport. As a matter of fact, the search for new superconductor materials has motivated an army of scientists, in particular, after the discovery of high-TC superconductor cuprates (HTS) in the mid-80s. Besides the unremitting interest in HTS, new materials, such as intermetallic borides, iron-nickel-based superconductors, heavy fermion, and organic and superhydride systems, are still delivering outstanding achievements to the scientific community, among which includes thousands of papers and a handful of Nobel prize winners). This Special Issue “Synthesis and Characterization of New Superconductor Materials” is a collection of scientific contributions providing new insights and advances in this fascinating field, addressing issues ranging from the fundamental research (theory and correlation between critical temperature, TC, and structural properties) to the development of innovative solutions for practical applications of superconductivity: Synthesis of new superconducting materials Magnetic and/or electric characterization of the TC transition Role of crystal symmetry and chemical substitutions on TC TC dependence on external stimuli and/or non-ambient conditions Theoretical modeling.
Defects play an important role in determining the properties of solids. This book provides an introduction to chemical bond, phonons, and thermodynamics; treatment of point defect formation and reaction, equilibria, mechanisms, and kinetics; kinetics chapters on solid state processes; and electrochemical techniques and applications. * Offers a coherent description of fundamental defect chemistry and the most common applications. * Up-to-date trends and developments within this field. * Combines electrochemical concepts with aspects of semiconductor physics.
Ceramic Membranes for Reaction and Separation is the first single-authored guide to the developing area of ceramic membranes. Starting by documenting established procedures of ceramic membrane preparation and characterization, this title then focuses on gas separation. The final chapter covers ceramic membrane reactors;- as distributors and separators, and general engineering considerations. Chapters include key examples to illustrate membrane synthesis, characterisation and applications in industry. Theoretical principles, advantages and disadvantages of using ceramic membranes under the various conditions are discussed where applicable.
This book presents a complete encyclopedia of superconducting fluctuations, summarising the last thirty-five years of work in the field. The first part of the book is devoted to an extended discussion of the Ginzburg-Landau phenomenology of fluctuations in its thermodynamical and time-dependent versions and its various applications. The second part deals with microscopic justification of the Ginzburg-Landau approach and presents the diagrammatic theory of fluctuations. The third part is devoted to a less-detailed review of the manifestation of fluctuations in observables: diamagnetism, magnetoconductivity, various tunneling characteristics, thermoelectricity, and NMR relaxation. The final chapters turn to the manifestation of fluctuations in unconventional superconducting systems: nanodrops, nanorings, Berezinsky-Kosterlitz-Thouless state, quantum phase transition between superconductor and insulator, and thermal and quantum fluctuations in weak superconducting systems. The book ends with a brief discussion on theories of high temperature superconductivity, where fluctuations appear as the possible protagonist of this exciting phenomenon.
This book is primarily an introduction to the vast family of ceramic materials. The first part is devoted to the basics of ceramics and processes: raw materials, powders synthesis, shaping and sintering. It discusses traditional ceramics as well as “technical” ceramics – both oxide and non-oxide – which have multiple developments. The second part focuses on properties and applications, and discusses both structural and functional ceramics, including bioceramics. The fields of abrasion, cutting and tribology illustrate the importance of mechanical properties. It also deals with the questions/answers of a ceramicist regarding electronuclear technology. As chemistry is an essential discipline for ceramicists, the book shows, in particular, what soft chemistry can contribute as a result of sol-gel methods.
This book is a comprehensive account of the present understanding of an important class of perovskite oxide materials with potential industrial applications. The chapters are written by well-known scientists who are on the forefront of the field and have directly contributed to its recent progress. Special care has been taken to maintain a balance between the space devoted to new experimental results and that devoted to recent theoretical developments. The book contains recent experimental and theoretical results on colossal magnetoresistive (CMR) manganites not covered by any other book in the field, and hence this will be very beneficial to graduate students and researchers in condensed matter and applied physics, materials science and solid state chemistry.
This book was written by authors in the field of ultrasound-assited synthesis and their applications. Among others, some of the topics covered are: ultrasound-assited synthesis of metal/metal oxide nanoparticles, graphene nanosheets, and ultrasound applications. In this book, authors focused on recent studies, applications, and new technological developments on fundamental properties of the ultrasound process.