Download Free Controlling And Reducing Pollution From Plastic Waste Book in PDF and EPUB Free Download. You can read online Controlling And Reducing Pollution From Plastic Waste and write the review.

An estimated 8 million metric tons (MMT) of plastic waste enters the world's ocean each year - the equivalent of dumping a garbage truck of plastic waste into the ocean every minute. Plastic waste is now found in almost every marine habitat, from the ocean surface to deep sea sediments to the ocean's vast mid-water region, as well as the Great Lakes. This report responds to a request in the bipartisan Save Our Seas 2.0 Act for a scientific synthesis of the role of the United States both in contributing to and responding to global ocean plastic waste. The United States is a major producer of plastics and in 2016, generated more plastic waste by weight and per capita than any other nation. Although the U.S. solid waste management system is advanced, it is not sufficient to deter leakage into the environment. Reckoning with the U.S. Role in Global Ocean Plastic Waste calls for a national strategy by the end of 2022 to reduce the nation's contribution to global ocean plastic waste at every step - from production to its entry into the environment - including by substantially reducing U.S. solid waste generation. This report also recommends a nationally-coordinated and expanded monitoring system to track plastic pollution in order to understand the scales and sources of U.S. plastic waste, set reduction and management priorities, and measure progress.
Plastic Waste and Recycling: Environmental Impact, Societal Issues, Prevention, and Solutions begins with an introduction to the different types of plastic materials, their uses, and the concepts of reduce, reuse and recycle before examining plastic types, chemistry and degradation patterns that are organized by non-degradable plastic, degradable and biodegradable plastics, biopolymers and bioplastics. Other sections cover current challenges relating to plastic waste, explain the sources of waste and their routes into the environment, and provide systematic coverage of plastic waste treatment methods, including mechanical processing, monomerization, blast furnace feedstocks, gasification, thermal recycling, and conversion to fuel. This is an essential guide for anyone involved in plastic waste or recycling, including researchers and advanced students across plastics engineering, polymer science, polymer chemistry, environmental science, and sustainable materials. - Presents actionable solutions for reducing plastic waste, with a focus on the concepts of collection, re-use, recycling and replacement - Considers major societal and environmental issues, providing the reader with a broader understanding and supporting effective implementation - Includes detailed case studies from across the globe, offering unique insights into different solutions and approaches
The objective of this guide is to raise awareness about the oceans' crucial importance to us and to the planet, and the growing threats posed by plastics discharged into and accumulating in the oceans. The guide outlines the key problems and challenges and how these can be addressed. The guide is promoting circular solutions to the ocean plastic pollution, and intends to inspire impactful action and change.
This book reviews the role of plastics in society and examines the environmental impact of different types of plastics.
While plastics are extremely useful materials for modern society, plastics production and waste generation continue to increase with worsening environmental impacts despite international, national and local policy responses, as well as industry commitments. The first of two reports, this Outlook intends to inform and support policy efforts to combat plastic leakage.
Winner of the International Solid Waste Association's 2014 Publication Award, Handbook of Recycling is an authoritative review of the current state-of-the-art of recycling, reuse and reclamation processes commonly implemented today and how they interact with one another. The book addresses several material flows, including iron, steel, aluminum and other metals, pulp and paper, plastics, glass, construction materials, industrial by-products, and more. It also details various recycling technologies as well as recovery and collection techniques. To completely round out the picture of recycling, the book considers policy and economic implications, including the impact of recycling on energy use, sustainable development, and the environment. With contemporary recycling literature scattered across disparate, unconnected articles, this book is a crucial aid to students and researchers in a range of disciplines, from materials and environmental science to public policy studies. - Portrays recent and emerging technologies in metal recycling, by-product utilization and management of post-consumer waste - Uses life cycle analysis to show how to reclaim valuable resources from mineral and metallurgical wastes - Uses examples from current professional and industrial practice, with policy and economic implications
Environmental engineers support the well-being of people and the planet in areas where the two intersect. Over the decades the field has improved countless lives through innovative systems for delivering water, treating waste, and preventing and remediating pollution in air, water, and soil. These achievements are a testament to the multidisciplinary, pragmatic, systems-oriented approach that characterizes environmental engineering. Environmental Engineering for the 21st Century: Addressing Grand Challenges outlines the crucial role for environmental engineers in this period of dramatic growth and change. The report identifies five pressing challenges of the 21st century that environmental engineers are uniquely poised to help advance: sustainably supply food, water, and energy; curb climate change and adapt to its impacts; design a future without pollution and waste; create efficient, healthy, resilient cities; and foster informed decisions and actions.
This open access book examines global plastic pollution, an issue that has become a critical societal challenge with implications for environmental and public health. This volume provides a comprehensive, holistic analysis on the plastic cycle and its subsequent effects on biota, food security, and human exposure. Importantly, global environmental change and its associated, systems-level processes, including atmospheric deposition, ecosystem complexity, UV exposure, wind patterns, water stratification, ocean circulation, etc., are all important direct and indirect factors governing the fate, transport and biotic and abiotic processing of plastic particles across ecosystem types. Furthermore, the distribution of plastic in the ocean is not independent of terrestrial ecosystem dynamics, since much of the plastic in marine ecosystems originates from land and should therefore be evaluated in the context of the larger plastic cycle. Changes in species size, distribution, habitat, and food web complexity, due to global environmental change, will likely alter trophic transfer dynamics and the ecological effects of nano- and microplastics. The fate and transport dynamics of plastic particles are influenced by their size, form, shape, polymer type, additives, and overall ecosystem conditions. In addition to the risks that plastics pose to the total environment, the potential impacts on human health and exposure routes, including seafood consumption, and air and drinking water need to be assessed in a comprehensive and quantitative manner. Here I present a holistic and interdisciplinary book volume designed to advance the understanding of plastic cycling in the environment with an emphasis on sources, fate and transport, ecotoxicology, climate change effects, food security, microbiology, sustainability, human exposure and public policy.