Download Free Controlled Atmosphere Transmission Electron Microscopy Book in PDF and EPUB Free Download. You can read online Controlled Atmosphere Transmission Electron Microscopy and write the review.

This book illustrates the practical workings of environmental transmission electron microscopy (ETEM) from history and instrument design through to solving practical problems. Aspects of instrument design, performance, and operating procedures are covered, together with common problems and pitfalls of the technique. Not only will a properly operated instrument and a carefully set up experiment provide new insight into your specimen, but the ability to observe the specimen in its natural habitat will be essential to meeting specific design criteria for the development of the next generation of materials. Over the past five decades, transmission electron microscopy (TEM) under environmental conditions relevant to a particular sample has been of increasing interest. Symposia dealing with the topic are now among the best attended at international microscopy conferences. Since typical operating modes for the ETEM require the sample be subjected to a harsh environment consisting of corrosive gases and high temperatures, the challenges of adapting and operating the instrument for observation under dynamic operating conditions are numerous. However, careful consideration of the interaction of the electrons with the gases and sample, as well as the gases with the microscope components, can lead to highly rewarding results. In Controlled Atmosphere Transmission Electron Microscopy, leading experts help you to perform successful experiments using the ETEM, and to interpret and understand the results.
Presents state-of-the-art knowledge of heterogeneous catalysts including new applications in energy and environmental fields This book focuses on emerging techniques in heterogeneous catalysis, from new methodology for catalysts design and synthesis, surface studies and operando spectroscopies, ab initio techniques, to critical catalytic systems as relevant to energy and the environment. It provides the vision of addressing the foreseeable knowledge gap unfilled by classical knowledge in the field. Heterogeneous Catalysts: Advanced Design, Characterization and Applications begins with an overview on the evolution in catalysts synthesis and introduces readers to facets engineering on catalysts; electrochemical synthesis of nanostructured catalytic thin films; and bandgap engineering of semiconductor photocatalysts. Next, it examines how we are gaining a more precise understanding of catalytic events and materials under working conditions. It covers bridging pressure gap in surface catalytic studies; tomography in catalysts design; and resolving catalyst performance at nanoscale via fluorescence microscopy. Quantum approaches to predicting molecular reactions on catalytic surfaces follows that, along with chapters on Density Functional Theory in heterogeneous catalysis; first principles simulation of electrified interfaces in electrochemistry; and high-throughput computational design of novel catalytic materials. The book also discusses embracing the energy and environmental challenges of the 21st century through heterogeneous catalysis and much more. Presents recent developments in heterogeneous catalysis with emphasis on new fundamentals and emerging techniques Offers a comprehensive look at the important aspects of heterogeneous catalysis Provides an applications-oriented, bottoms-up approach to a high-interest subject that plays a vital role in industry and is widely applied in areas related to energy and environment Heterogeneous Catalysts: Advanced Design, Characterization and Applications is an important book for catalytic chemists, materials scientists, surface chemists, physical chemists, inorganic chemists, chemical engineers, and other professionals working in the chemical industry.
This book concisely illustrates the techniques of major surface analysis and their applications to a few key examples. Surfaces play crucial roles in various interfacial processes, and their electronic/geometric structures rule the physical/chemical properties. In the last several decades, various techniques for surface analysis have been developed in conjunction with advances in optics, electronics, and quantum beams. This book provides a useful resource for a wide range of scientists and engineers from students to professionals in understanding the main points of each technique, such as principles, capabilities and requirements, at a glance. It is a contemporary encyclopedia for selecting the appropriate method depending on the reader's purpose.
This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology—a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability. Nanotechnology is popular today. However, basic scientific aspects of the relevant, underlying processes have not received sufficient attention. This book fills the gap in the current literature by addressing certain fundamentals of gas-phase nanoparticle synthesis. Chapters cover topics such as forces within and dynamics of nanoparticle systems, gas evaporation and deposition, laser assisted nanoparticle synthesis, and nanoparticle fabrication via flame processes. A chapter on in-situ structural studies of nanoparticles undergoing growth complements the exposition.
This book focuses on in-situ transmission electron microscopy (TEM), an investigatory technique used to observe a sample’s response to a given stimulus (including electron irradiation, thermal excitation, mechanical force, optical excitation, electric and magnetic fields) at the nanoscale in real time. The book introduces readers to the technical strategy behind the in-situ technique and its developments. It reviews the research frontiers of using in-situ TEM in energy conversion and storage, catalysis, nanomaterials synthesis, nanoelectronics, etc. Furthermore, it discusses the future prospects for in-situ TEM. The book offers a valuable guide for all undergraduate and graduate students who are interested in TEM characterization technology. It also serves as a reference source on cutting-edge in-situ techniques for researchers and engineers.
2.6.2 Electrodes for Electrochemistry
This text is a companion volume to Transmission Electron Microscopy: A Textbook for Materials Science by Williams and Carter. The aim is to extend the discussion of certain topics that are either rapidly changing at this time or that would benefit from more detailed discussion than space allowed in the primary text. World-renowned researchers have contributed chapters in their area of expertise, and the editors have carefully prepared these chapters to provide a uniform tone and treatment for this exciting material. The book features an unparalleled collection of color figures showcasing the quality and variety of chemical data that can be obtained from today’s instruments, as well as key pitfalls to avoid. As with the previous TEM text, each chapter contains two sets of questions, one for self assessment and a second more suitable for homework assignments. Throughout the book, the style follows that of Williams & Carter even when the subject matter becomes challenging—the aim is always to make the topic understandable by first-year graduate students and others who are working in the field of Materials Science Topics covered include sources, in-situ experiments, electron diffraction, Digital Micrograph, waves and holography, focal-series reconstruction and direct methods, STEM and tomography, energy-filtered TEM (EFTEM) imaging, and spectrum imaging. The range and depth of material makes this companion volume essential reading for the budding microscopist and a key reference for practicing researchers using these and related techniques.
In-Situ Transmission Electron Microscopy Experiments Design and execute cutting-edge experiments with transmission electron microscopy using this essential guide In-situ microscopy is a recently-discovered and rapidly-developing approach to transmission electron microscopy (TEM) that allows for the study of atomic and/or molecular changes and processes while they are in progress. Experimental specimens are subjected to stimuli that replicate near real-world conditions and their effects are observed at a previously unprecedented scale. Though in-situ microscopy is becoming an increasingly important approach to TEM, there are no current texts combining an up-to-date overview of this cutting-edge set of techniques with the experience of in-situ TEM professionals. In-Situ Transmission Electron Microscopy Experiments meets this need with a work that synthesizes the collective experience of myriad collaborators. It constitutes a comprehensive guide for planning and performing in-situ TEM measurements, incorporating both fundamental principles and novel techniques. Its combination of technical detail and practical how-to advice makes it an indispensable introduction to this area of research. In-Situ Transmission Electron Microscopy Experiments readers will also find: Coverage of the entire experimental process, from method selection to experiment design to measurement and data analysis Detailed treatment of multimodal and correlative microscopy, data processing and machine learning, and more Discussion of future challenges and opportunities facing this field of research In-Situ Transmission Electron Microscopy Experiments is essential for graduate students, post-doctoral fellows, and early career researchers entering the field of in-situ TEM.
Transmission electron microscopy is a powerful tool for looking at small physical specimens from nanomaterials, metal alloys and other structural materials, to microorganisms, tissues and biomacromolecules. The book covers microscope design and explains how the miscoscope functions and operates. It provides the essential theoretical and practical information in a compact manner together with case studies and a summary of good operator practices.
This book offers a comprehensive treatment of the molecular design, characterization, and physical chemistry of soft interfaces. At the same time, the book aims to encourage the fabrication of functional materials including biomaterials. During the past few decades there has been steady growth in soft-interface science, and that growth has been especially rapid in the twenty-first century. The field is interdisciplinary because it involves chemistry, polymer science, materials science, physical chemistry, and biology. Based on the increasing interdisciplinary nature of undergraduate and graduate programs, the primary goal of this present work is to serve as a comprehensive resource for senior-level undergraduates and for graduate students, particularly in polymer chemistry, materials science, bioconjugate chemistry, bioengineering, and biomaterials. Additionally, with the growing interest in the fabrication of functional soft materials, this book provides essential fundamental information for researchers not only in academia but also in industry.