Download Free Controllable Synthesis And Atomic Scale Regulation Of Noble Metal Catalysts Book in PDF and EPUB Free Download. You can read online Controllable Synthesis And Atomic Scale Regulation Of Noble Metal Catalysts and write the review.

This book introduces readers to the preparation of metal nanocrystals and its applications. In this book, an important point highlighted is how to design noble metal nanocrystals at the atomic scale for energy conversion and storage. It also focuses on the controllable synthesis of water splitting electrode materials including anodic oxygen evolution reaction (OER) and cathode hydrogen evolution reaction (HER) at the atomic level by defect engineering and synergistic effect. In addition, in-situ technologies and theoretical calculations are utilized to reveal the catalytic mechanisms of catalysts under realistic operating condition. The findings presented not only enrich research in the nano-field, but also support the promotion of national and international cooperation.
This book introduces readers to the preparation of metal nanocrystals and its applications. In this book, an important point highlighted is how to design noble metal nanocrystals at the atomic scale for energy conversion and storage. It also focuses on the controllable synthesis of water splitting electrode materials including anodic oxygen evolution reaction (OER) and cathode hydrogen evolution reaction (HER) at the atomic level by defect engineering and synergistic effect. In addition, in-situ technologies and theoretical calculations are utilized to reveal the catalytic mechanisms of catalysts under realistic operating condition. The findings presented not only enrich research in the nano-field, but also support the promotion of national and international cooperation.
Our society depends heavily on metals. They are ubiquitous construction materials, critical interconnects in integrated circuits, common coinage materials, and more. Excitingly, new uses for metals are emerging with the advent of nanoscience, as metal crystals with nanoscale dimensions can display new and tunable properties. The optical and photothermal properties of metal nanocrystals have led to cancer diagnosis and treatment platforms now in clinical trials, while, at the same time, the ability to tune the surface features of metal nanocrystals is giving rise to designer catalysts that enable more sustainable use of precious resources. These are just two examples of how metal nanocrystals are addressing important social needs.
Catalysis is a central topic in chemical transformation and energy conversion. Thanks to the spectacular achievements of colloidal chemistry and the synthesis of nanomaterials over the last two decades, there have also been significant advances in nanoparticle catalysis. Catalysis on different metal nanostructures with well-defined structures and composition has been extensively studied. Metal nanocrystals synthesized with colloidal chemistry exhibit different catalytic performances in contrast to metal nanoparticles prepared with impregnation or deposition precipitation. Additionally, theoretical approaches in predicting catalysis performance and understanding catalytic mechanism on these metal nanocatalysts have made significant progress. Metal Nanoparticles for Catalysis is a comprehensive text on catalysis on Nanoparticles, looking at both their synthesis and applications. Chapter topics include nanoreactor catalysis; Pd nanoparticles in C-C coupling reactions; metal salt-based gold nanocatalysts; theoretical insights into metal nanocatalysts; and nanoparticle mediated clock reaction. This book bridges the gap between nanomaterials synthesis and characterization, and catalysis. As such, this text will be a valuable resource for postgraduate students and researchers in these exciting fields.
Now in 8 volumes, the completely revised and expanded second edition of this much-cited handbook collates the knowledge available on heterogeneous catalysis, providing easy-to-find yet comprehensive information. The new edition contains some 80% more material and takes into account the latest developments in the field, making it still the most up-to-date compendium in heterogeneous catalysis. More than 300 leading experts -- a veritable "Who's Who" in catalysis -- contributed to this unrivalled masterpiece, covering all aspects of the subject, from the physico-chemical foundations to large-scale industrial applications. With its straightforward presentation, this is an essential and indispensable tool for every scientist working in this area.
This book gradually brings the reader, through illustrations of the most crucial discoveries, into the modern world of chemical catalysis. Readers and experts will better understand the enormous influence that catalysis has given to the development of modern societies. • Highlights the field's onset up to its modern days, covering the life and achievements of luminaries of the catalytic era • Appeals to general audience in interpretation and analysis, but preserves the precision and clarity of a scientific approach • Fills the gap in publications that cover the history of specific catalytic processes
Systematically summarizes the current status and recent advances in bimetallic structures, their shape-controlled synthesis, properties, and applications Intensive researches are currently being carried out on bimetallic nanostructures, focusing on a number of fundamental, physical, and chemical questions regarding their synthesis and properties. This book presents a systematic and comprehensive summary of the current status and recent advances in this field, supporting readers in the synthesis of model bimetallic nanoparticles, and the exploration and interpretation of their properties. Bimetallic Nanostructures: Shape-Controlled Synthesis for Catalysis, Plasmonics and Sensing Applications is divided into three parts. Part 1 introduces basic chemical and physical knowledge of bimetallic structures, including fundamentals, computational models, and in situ characterization techniques. Part 2 summarizes recent developments in synthetic methods, characterization, and properties of bimetallic structures from the perspective of morphology effect, including zero-dimensional nanomaterials, one-dimensional nanomaterials, and two-dimensional nanomaterials. Part 3 discusses applications in electrocatalysis, heterogeneous catalysis, plasmonics and sensing. Comprehensive reference for an important multidisciplinary research field Thoroughly summarizes the present state and latest developments in bimetallic structures Helps researchers find optimal synthetic methods and explore new phenomena in surface science and synthetic chemistry of bimetallic nanostructures Bimetallic Nanostructures: Shape-Controlled Synthesis for Catalysis, Plasmonics and Sensing Applications is an excellent source or reference for researchers and advanced students. Academic researchers in nanoscience, nanocatalysis, and surface plasmonics, and those working in industry in areas involving nanotechnology, catalysis and optoelectronics, will find this book of interest.
This book is about supramolecular gold chemistry. This book provides a unique international forum aimed at covering a broad description of results involving the supramolecular chemistry of gold with a special focus on the gold–sulfur interface leading to hybrid materials ranging from gold–thiolate complexes to thiolate-protected gold nanoclusters and gold–thiolate supramolecular assemblies or nanoparticles. The role of thiolates on the structure and optical features of gold nanohybrid systems (ranging from plasmonic gold nanoparticles and fluorescent gold nanoclusters to self-assembled Au-containing thiolated coordination polymers) is highlighted in the 12 papers presented in this book.
The rapid expansion of the nanotechnology field raises concerns, like any new technology, about the toxicity and environmental impact of nanomaterials. This book addresses the gaps relating to health and safety issues of this field and aims to bring together fragmented knowledge on nanosafety. Not only do chapters address conventional toxicity issues, but also more recent developments such as food borne nanoparticles, life cycle analysis of nanoparticles and nano ethics. In addition, the authors discuss the environmental impact of nanotechnologies as well as safety guidelines and ethical issues surrounding the use of nanoparticles. In particular this book presents a unique compilation of experimental and computational perspectives and illustrates the use of computational models as a support for experimental work. Nanotoxicology: Experimental and Computational Perspectives is aimed towards postgraduates, academics, and practicing industry professionals. This highly comprehensive review also serves as an excellent foundation for undergraduate students and researchers new to nanotechnology and nanotoxicology. It is of particular value to toxicologists working in nanotechnology, chemical risk assessment, food science, environmental, safety, chemical engineering, the biological sciences and pharmaceutical research.
With techniques bridging the gap between surface science and heterogeneous catalysis the book presents a tool-kit for anyone wishing to prepare and define solid catalysts.