Download Free Control Techniques For Complex Networks Book in PDF and EPUB Free Download. You can read online Control Techniques For Complex Networks and write the review.

From foundations to state-of-the-art; the tools and philosophy you need to build network models.
As network science and technology continues to gain popularity, it becomes imperative to develop procedures to examine emergent network domains, as well as classical networks, to help ensure their overall optimization. Advanced Methods for Complex Network Analysis features the latest research on the algorithms and analysis measures being employed in the field of network science. Highlighting the application of graph models, advanced computation, and analytical procedures, this publication is a pivotal resource for students, faculty, industry practitioners, and business professionals interested in theoretical concepts and current developments in network domains.
This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students and practitioners a unique update on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the IX International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2020). The carefully selected papers cover a wide range of theoretical topics such as network models and measures; community structure, network dynamics; diffusion, epidemics and spreading processes; resilience and control as well as all the main network applications, including social and political networks; networks in finance and economics; biological and neuroscience networks and technological networks.
A comprehensive introduction to the theory and applications of complex network science, complete with real-world data sets and software tools.
Complex networks such as the Internet, WWW, transportation networks, power grids, biological neural networks, and scientific cooperation networks of all kinds provide challenges for future technological development. • The first systematic presentation of dynamical evolving networks, with many up-to-date applications and homework projects to enhance study • The authors are all very active and well-known in the rapidly evolving field of complex networks • Complex networks are becoming an increasingly important area of research • Presented in a logical, constructive style, from basic through to complex, examining algorithms, through to construct networks and research challenges of the future
A modern mathematical approach to the design of communication networks for graduate students, blending control, optimization, and stochastic network theories alongside a broad range of performance analysis tools. Practical applications are illustrated by making connections to network algorithms and protocols. End-of-chapter problems covering a range of difficulties support student learning.
Complex networks are typically not homogeneous, as they tend to display an array of structures at different scales. A feature that has attracted a lot of research is their modular organisation, i.e., networks may often be considered as being composed of certain building blocks, or modules. In this Element, the authors discuss a number of ways in which this idea of modularity can be conceptualised, focusing specifically on the interplay between modular network structure and dynamics taking place on a network. They discuss, in particular, how modular structure and symmetries may impact on network dynamics and, vice versa, how observations of such dynamics may be used to infer the modular structure. They also revisit several other notions of modularity that have been proposed for complex networks and show how these can be related to and interpreted from the point of view of dynamical processes on networks.
Publisher description
Networked systems are all around us. The accumulated evidence of systems as complex as a cell cannot be fully understood by studying only their isolated constituents, giving rise to a new area of interest in research ? the study of complex networks. In a broad sense, biological networks have been one of the most studied networks, and the field has benefited from many important contributions. By understanding and modeling the structure of a biological network, a better perception of its dynamical and functional behavior is to be expected. This unique book compiles the most relevant results and novel insights provided by network theory in the biological sciences, ranging from the structure and dynamics of the brain to cellular and protein networks and to population-level biology.
This research aims to achieve a fundamental understanding of synchronization and its interplay with the topology of complex networks. Synchronization is a ubiquitous phenomenon observed in different contexts in physics, chemistry, biology, medicine and engineering. Most prominently, synchronization takes place in the brain, where it is associated with several cognitive capacities but is - in abundance - a characteristic of neurological diseases. Besides zero-lag synchrony, group and cluster states are considered, enabling a description and study of complex synchronization patterns within the presented theory. Adaptive control methods are developed, which allow the control of synchronization in scenarios where parameters drift or are unknown. These methods are, therefore, of particular interest for experimental setups or technological applications. The theoretical framework is demonstrated on generic models, coupled chemical oscillators and several detailed examples of neural networks.