Download Free Control Of Primary Metabolism In Plants Ed By William C Plaxton Book in PDF and EPUB Free Download. You can read online Control Of Primary Metabolism In Plants Ed By William C Plaxton and write the review.

The ability to control the rates of metabolic processes in response to changes in the internal or external environment is an indispensable attribute of living cells that must have arisen with life’s origin. This adaptability is necessary for conserving the stability of the intracellular environment which is, in turn, essential for maintaining an efficient functional state. The advent of genomics, proteomics, and metabolomics has revolutionised the study of plant development and is now having a significant impact on the study of plant metabolism and its control. In the last few years, significant advances have been made, with the elucidation of enzyme gene families and the identification of new proteinaceous and allosteric regulators. The first part of this volume is devoted to generic aspects of metabolic control, with chapters on the key control points in pathways. Part Two considers the control of specific pathways, with detailed descriptions (including structures) and discussions of the regulation of these pathways, particularly in terms of the enzymology. The book is directed at researchers and professionals in plant biochemistry, physiology, molecular biology and cell biology.
Respiration in plants, as in all living organisms, is essential to provide metabolic energy and carbon skeletons for growth and maintenance. As such, respiration is an essential component of a plant’s carbon budget. Depending on species and environmental conditions, it consumes 25-75% of all the carbohydrates produced in photosynthesis – even more at extremely slow growth rates. Respiration in plants can also proceed in a manner that produces neither metabolic energy nor carbon skeletons, but heat. This type of respiration involves the cyanide-resistant, alternative oxidase; it is unique to plants, and resides in the mitochondria. The activity of this alternative pathway can be measured based on a difference in fractionation of oxygen isotopes between the cytochrome and the alternative oxidase. Heat production is important in some flowers to attract pollinators; however, the alternative oxidase also plays a major role in leaves and roots of most plants. A common thread throughout this volume is to link respiration, including alternative oxidase activity, to plant functioning in different environments.
Functional Metabolism of Cells is the first comprehensive survey of metabolism, offering an in-depth examination of metabolism and regulation of carbohydrates, lipids, and amino acids. It provides a basic background on metabolic regulation and adaptation as well as the chemical logic of metabolism, and covers the interrelationship of metabolism to life processes of the whole organism. The book lays out a structured approach to the metabolic basis of disease, including discussion of the normal pathways of metabolism, altered pathways leading to disease, and use of molecular genetics in diagnosis and treatment of disease. It also takes a unique comparative approach in which human metabolism is a reference for metabolism in microorganisms and plant design, and presents novel coverage of development and aging, and human health and animal adaptation. The final chapter reviews the past and future promise of new genetic approaches to treatment and bioinformatics. This, the most exhaustive treatment of metabolism currently available, is a useful text for advanced undergraduates and graduates in biochemistry, cell/molecular biology, and biomedicine, as well as biochemistry instructors and investigators in related fields.
The development of phosphorus (P)-efficient crop varieties is urgently needed to reduce agriculture's current over-reliance on expensive, environmentally destructive, non-renewable and inefficient P-containing fertilizers. The sustainable management of P in agriculture necessitates an exploitation of P-adaptive traits that will enhance the P-acquisition and P-use efficiency of crop plants. Action in this area is crucial to ensure sufficient food production for the world’s ever-expanding population, and the overall economic success of agriculture in the 21st century. This informative and up-to-date volume presents pivotal research directions that will facilitate the development of effective strategies for bioengineering P-efficient crop species. The 14 chapters reflect the expertise of an international team of leading authorities in the field, who review information from current literature, develop novel hypotheses, and outline key areas for future research. By evaluating aspects of vascular plant and green algal P uptake and metabolism, this book provides insights as to how plants sense, acquire, recycle, scavenge and use P, particularly under the naturally occurring condition of soluble inorganic phosphate deficiency that characterises the vast majority of unfertilised soils, worldwide. The reader is provided with a full appreciation of the diverse information concerning plant P-starvation responses, as well as the crucial role that plant–microbe interactions play in plant P acquisition. Annual Plant Reviews, Volume 48: Phosphorus Metabolism in Plants is an important resource for plant geneticists, biochemists and physiologists, as well as horticultural and environmental research workers, advanced students of plant science and university lecturers in related disciplines. It is an essential addition to the shelves of university and research institute libraries and agricultural and ecological institutions teaching and researching plant science.
Provides a simplified description of the partial process of photosynthesis at the molecular, organelle, cell and organ levels of organization in plants, which contribute to the complete process. It surveys effects of global environmental change, carbon dioxide enrichment and ozone depletion.
Rapid developments in molecular and systems biology techniques have allowed researchers to unravel many new mechanisms through which plant cells switch over to alternative respiratory pathways. This book is a unique compendium of how and why higher plants evolved alternative respiratory metabolism. It offers a comprehensive review of current research in the biochemistry, physiology, classification and regulation of plant alternative respiratory pathways, from alternative oxidase diversity to functional marker development. The resource provides a broad range of perspectives on the applications of plant respiratory physiology, and suggests brand new areas of research. Other key features: written by an international team of reputed plant physiologists, known for their pioneering contributions to the knowledge of regular and alternative respiratory metabolism in higher plants includes step-by-step protocols for key molecular and imaging techniques advises on regulatory options for managing crop yields, food quality and environment for crop improvement and enhanced food security covers special pathways which are of key relevance in agriculture, particularly in plant post-harvest commodities Primarily for plant physiologists and plant biologists, this authoritative compendium will also be of great value to postdoctoral researchers working on plant respiration, as well as to graduate and postgraduate students and university staff in Plant Science. It is a useful resource for corporate and private firms involved in developing functional markers for breeding programs and controlling respiration for the prevention of post-harvest losses in fruit, vegetables, cut flowers and tubers.
This text presents the principles of mineral nutrition in the light of current advances. For this second edition more emphasis has been placed on root water relations and functions of micronutrients as well as external and internal factors on root growth and the root-soil interface.
Mitochondria are sometimes called the powerhouses of eukaryotic cells, because mitochondria are the site of ATP synthesis in the cell. ATP is the universal energy currency, it provides the power that runs all other life processes. Humans need oxygen to survive because of ATP synthesis in mitochondria. The sugars from our diet are converted to carbon dioxide in mitochondria in a process that requires oxygen. Just like a fire needs oxygen to burn, our mitochondria need oxygen to make ATP. From textbooks and popular literature one can easily get the impression that all mitochondria require oxygen. But that is not the case. There are many groups of organismsm known that make ATP in mitochondria without the help of oxygen. They have preserved biochemical relicts from the early evolution of eukaryotic cells, which took place during times in Earth history when there was hardly any oxygen avaiable, certainly not enough to breathe. How the anaerobic forms of mitochondria work, in which organisms they occur, and how the eukaryotic anaerobes that possess them fit into the larger picture of rising atmospheric oxygen during Earth history are the topic of this book.
Jointly published with INRA, Paris. This book covers all aspects of the transfer of nitrogen from the soil and air to a final resting place in the seed protein of a crop plant. It describes the physiological and molecular mechanisms of ammonium and nitrate transport and assimilation, including symbiotic nitrogen fixation by the Rhizobiacea. Amino acid metabolism and nitrogen traffic during plant growth and development and details of protein biosynthesis in the seeds are also extensively covered. Finally, the effects of the application of nitrogen fertilisers on plant growth, crop yield and the environment are discussed. Written by international experts in their field, Plant Nitrogen is essential reading for all plant biochemists, biotechnologists, molecular biologists and physiologists as well as plant breeders, agricultural engineers, agronomists and phytochemists.