Download Free Control Of Explosives Book in PDF and EPUB Free Download. You can read online Control Of Explosives and write the review.

Improvised explosive devices (IEDs) are a type of unconventional explosive weapon that can be deployed in a variety of ways, and can cause loss of life, injury, and property damage in both military and civilian environments. Terrorists, violent extremists, and criminals often choose IEDs because the ingredients, components, and instructions required to make IEDs are highly accessible. In many cases, precursor chemicals enable this criminal use of IEDs because they are used in the manufacture of homemade explosives (HMEs), which are often used as a component of IEDs. Many precursor chemicals are frequently used in industrial manufacturing and may be available as commercial products for personal use. Guides for making HMEs and instructions for constructing IEDs are widely available and can be easily found on the internet. Other countries restrict access to precursor chemicals in an effort to reduce the opportunity for HMEs to be used in IEDs. Although IED attacks have been less frequent in the United States than in other countries, IEDs remain a persistent domestic threat. Restricting access to precursor chemicals might contribute to reducing the threat of IED attacks and in turn prevent potentially devastating bombings, save lives, and reduce financial impacts. Reducing the Threat of Improvised Explosive Device Attacks by Restricting Access to Explosive Precursor Chemicals prioritizes precursor chemicals that can be used to make HMEs and analyzes the movement of those chemicals through United States commercial supply chains and identifies potential vulnerabilities. This report examines current United States and international regulation of the chemicals, and compares the economic, security, and other tradeoffs among potential control strategies.
In response to the rising concern of the American public over illegal bombings, the Bureau of Alcohol, Tobacco, and Firearms asked the National Research Council to examine possible mechanisms for reducing this threat. The committee examined four approaches to reducing the bombing threat: addition of detection markers to explosives for pre-blast detection, addition of identification taggants to explosives for post-blast identification of bombers, possible means to render common explosive materials inert, and placing controls on explosives and their precursors. The book makes several recommendations to reduce the number of criminal bombings in this country.
Offers guidance on how to comply with the Manufacture and Storage of Explosives Regulations 2005, which cover the manufacture, storage and handling of explosives, including blasting explosives, propellants, detonators and detonating cord, fireworks and other pyrotechnic articles, and ammunition.
This book details how safety (i.e. the absence of unacceptable risks) is ensured in areas where potentially explosive atmospheres (ATEX) can arise. The book also offers readers essential information on how to comply with the newest (April 2016) EU legislation when the presence of ATEX cannot be avoided. By presenting general guidance on issues arising out of the EU ATEX legislation – especially on zone classification, explosion risk assessment, equipment categorization, Ex-marking and related technical/chemical aspects – the book provides equipment manufacturers, responsible employers, and others with the essential knowledge they need to be able to understand the different – and often complicated – aspects of ATEX and to implement the necessary safety precautions. As such, it represents a valuable resource for all those concerned with maintaining high levels of safety in ATEX environments.
Detection and quantification of trace chemicals is a major thrust of analytical chemistry. In recent years much effort has been spent developing detection systems for priority pollutants. Less mature are the detections of substances of interest to law enforcement and security personnel:in particular explosives. This volume will discuss the detection of these, not only setting out the theoretical fundamentals, but also emphasizing the remarkable developments in the last decade. Terrorist events—airplanes blown out of the sky (PanAm 103 over Lockerbie) and attacks on U.S. and European cities (Trade Center in New York and the Murrah Federal Building in Oklahoma City, railways in London and Madrid)--emphasize the danger of concealed explosives. However, since most explosives release little vapor, it was not possible to detect them by technology used on most organic substances. After PanAm 103 was downed over Scotland, the U.S. Congress requested automatic explosive detection equipment be placed in airports. This volume outlines the history of explosive detection research, the developments along the way, present day technologies, and what we think the future holds. - Written by experts in the field who set out both the scientific issues and the practical context with authority - Discusses and describes the threat - Describes the theoretical background and practical applications of both trace and bulk explosives detection
It seems that there is no book that treats the measurement of the physical pa rameters of explosives as its only subject, although limited information is avail able in a number of books. Therefore, I have tried to bridge this gap in the lit erature with this book. A large number of various physical parameters have to be determined ex perimentally in order to test or characterise an explosive. Various physical principles have been applied for such measurements. Accordingly, a large number of different experimental methods exist, as well as various testing appa ratuses and procedures. On the other hand, great progress has been made recently in the study of detonation phenomena. New measuring techniques can assess extremely short processes to below nanoseconds scale. They make it possible to determine im portant parameters in detonation physics. I have made a great attempt to cover the available literature data on the subject. Because it would be a highly demanding task to include in a single volume all the methods that are in use by various testing agencies, I have tried to give primarily the principles for determination of individual physical pa rameters of explosives by different measuring methods as well as data treatment procedures.