Download Free Control Of Chaos In Advanced Motor Drives Book in PDF and EPUB Free Download. You can read online Control Of Chaos In Advanced Motor Drives and write the review.

This dissertation, "Control of Chaos in Advanced Motor Drives" by Yuan, Gao, 高源, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. DOI: 10.5353/th_b4501478 Subjects: Electric motors, Induction Electric machinery, Synchronous Chaotic behavior in systems
In Chaos in Electric Drive Systems: Analysis, Control and Application authors Chau and Wang systematically introduce an emerging technology of electrical engineering that bridges abstract chaos theory and practical electric drives. The authors consolidate all important information in this interdisciplinary technology, including the fundamental concepts, mathematical modeling, theoretical analysis, computer simulation, and hardware implementation. The book provides comprehensive coverage of chaos in electric drive systems with three main parts: analysis, control and application. Corresponding drive systems range from the simplest to the latest types: DC, induction, synchronous reluctance, switched reluctance, and permanent magnet brushless drives. The first book to comprehensively treat chaos in electric drive systems Reviews chaos in various electrical engineering technologies and drive systems Presents innovative approaches to stabilize and stimulate chaos in typical drives Discusses practical application of chaos stabilization, chaotic modulation and chaotic motion Authored by well-known scientists in the field Lecture materials available from the book's companion website This book is ideal for researchers and graduate students who specialize in electric drives, mechatronics, and electric machinery, as well as those enrolled in classes covering advanced topics in electric drives and control. Engineers and product designers in industrial electronics, consumer electronics, electric appliances and electric vehicles will also find this book helpful in applying these emerging techniques. Lecture materials for instructors available at www.wiley.com/go/chau_chaos
In the recent years, fractional-order systems have been studied by many researchers in the engineering field. It was found that many systems can be described more accurately by fractional differential equations than by integer-order models. Advanced Synchronization Control and Bifurcation of Chaotic Fractional-Order Systems is a scholarly publication that explores new developments related to novel chaotic fractional-order systems, control schemes, and their applications. Featuring coverage on a wide range of topics including chaos synchronization, nonlinear control, and cryptography, this publication is geared toward engineers, IT professionals, researchers, and upper-level graduate students seeking current research on chaotic fractional-order systems and their applications in engineering and computer science.
Controlling Chaos achieves three goals: the suppression, synchronisation and generation of chaos, each of which is the focus of a separate part of the book. The text deals with the well-known Lorenz, Rössler and Hénon attractors and the Chua circuit and with less celebrated novel systems. Modelling of chaos is accomplished using difference equations and ordinary and time-delayed differential equations. The methods directed at controlling chaos benefit from the influence of advanced nonlinear control theory: inverse optimal control is used for stabilization; exact linearization for synchronization; and impulsive control for chaotification. Notably, a fusion of chaos and fuzzy systems theories is employed. Time-delayed systems are also studied. The results presented are general for a broad class of chaotic systems. This monograph is self-contained with introductory material providing a review of the history of chaos control and the necessary mathematical preliminaries for working with dynamical systems.
In industrial engineering and manufacturing, control of individual processes and systems is crucial to developing a quality final product. Rapid developments in technology are pioneering new techniques of research in control and automation with multi-disciplinary applications in electrical, electronic, chemical, mechanical, aerospace, and instrumentation engineering. The Handbook of Research on Advanced Intelligent Control Engineering and Automation presents the latest research into intelligent control technologies with the goal of advancing knowledge and applications in various domains. This text will serve as a reference book for scientists, engineers, and researchers, as it features many applications of new computational and mathematical tools for solving complicated problems of mathematical modeling, simulation, and control.
The proceedings collect the latest research trends, methods and experimental results in the field of electrical and information technologies for rail transportation. The topics cover intelligent computing, information processing, communication technology, automatic control, and their applications in rail transportation etc. The proceedings can be a valuable reference work for researchers and graduate students working in rail transportation, electrical engineering and information technologies.
Complexity Science and Chaos Theory are fascinating areas of scientific research with wide-ranging applications. The interdisciplinary nature and ubiquity of complexity and chaos are features that provides scientists with a motivation to pursue general theoretical tools and frameworks. Complex systems give rise to emergent behaviors, which in turn produce novel and interesting phenomena in science, engineering, as well as in the socio-economic sciences. The aim of all Symposia on Chaos and Complex Systems (CCS) is to bring together scientists, engineers, economists and social scientists, and to discuss the latest insights and results obtained in the area of corresponding nonlinear-system complex (chaotic) behavior. Especially for the “4th International Interdisciplinary Chaos Symposium on Chaos and Complex Systems,” which took place April 29th to May 2nd, 2012 in Antalya, Turkey, the scope of the symposium had been further enlarged so as to encompass the presentation of work from circuits to econophysics, and from nonlinear analysis to the history of chaos theory. The corresponding proceedings collected in this volume address a broad spectrum of contemporary topics, including but not limited to networks, circuits, systems, biology, evolution and ecology, nonlinear dynamics and pattern formation, as well as neural, psychological, psycho-social, socio-economic, management complexity and global systems.
This book presents the proceedings of the 5th International Conference on Advanced Intelligent Systems and Informatics 2019 (AISI2019), which took place in Cairo, Egypt, from October 26 to 28, 2019. This international and interdisciplinary conference, which highlighted essential research and developments in the fields of informatics and intelligent systems, was organized by the Scientific Research Group in Egypt (SRGE). The book is divided into several sections, covering the following topics: machine learning and applications, swarm optimization and applications, robotic and control systems, sentiment analysis, e-learning and social media education, machine and deep learning algorithms, recognition and image processing, intelligent systems and applications, mobile computing and networking, cyber-physical systems and security, smart grids and renewable energy, and micro-grid and power systems.