Download Free Control Loop Performance Assessment And Oscillation Detection Book in PDF and EPUB Free Download. You can read online Control Loop Performance Assessment And Oscillation Detection and write the review.

In the process industries, stiction is the most common performance-limiting valve problem and over the last decade numerous different techniques for overcoming it have been proposed. This book represents a comprehensive presentation of these methods, including their principles, assumptions, strengths and drawbacks. Guidelines and working procedures are provided for the implementation of each method and MATLAB®-based software can be downloaded from www.ualberta.ca/~bhuang/stiction-book enabling readers to apply the methods to their own data. Methods for the limitation of stiction effects are proposed within the general context of: oscillation detection in control loops, stiction detection, diagnosis and stiction quantification and diagnosis of multiple faults. The state-of-the-art algorithms presented in this book are demonstrated and compared in industrial case studies of diverse origin – chemicals, building, mining, pulp and paper, mineral and metal processing.
This book presents a comprehensive review of currently available Control Performance Assessment methods. It covers a broad range of classical and modern methods, with a main focus on assessment practice, and is intended to help practitioners learn and properly perform control assessment in the industrial reality. Further, it offers an educational guide for control engineers, who are currently in high demand in the industry. The book consists of three main parts. Firstly, a comprehensive review of available approaches is presented and discussed. The classical canon methods are extended with a discussion of nonlinear and complex alternative measures using non-Gaussian statistics, persistence and fractional calculations. Secondly, the methods’ applicability aspects are visualized with the aid of computer simulations, covering the most popular control philosophies used in the process industry. Lastly, a critical review of the methods discussed, on the basis of real-world industrial examples, rounds out the coverage.
Control Performance Management in Industrial Automation provides a coherent and self-contained treatment of a group of methods and applications of burgeoning importance to the detection and solution of problems with control loops that are vital in maintaining product quality, operational safety, and efficiency of material and energy consumption in the process industries. The monograph deals with all aspects of control performance management (CPM), from controller assessment (minimum-variance-control-based and advanced methods), to detection and diagnosis of control loop problems (process non-linearities, oscillations, actuator faults), to the improvement of control performance (maintenance, re-design of loop components, automatic controller re-tuning). It provides a contribution towards the development and application of completely self-contained and automatic methodologies in the field. Moreover, within this work, many CPM tools have been developed that goes far beyond available CPM packages. Control Performance Management in Industrial Automation: · presents a comprehensive review of control performance assessment methods; · develops methods and procedures for the detection and diagnosis of the root-causes of poor performance in complex control loops; · covers important issues that arise when applying these assessment and diagnosis methods; · recommends new approaches and techniques for the optimization of control loop performance based on the results of the control performance stage; and · offers illustrative examples and industrial case studies drawn from – chemicals, building, mining, pulp and paper, mineral and metal processing industries. This book will be of interest to academic and industrial staff working on control systems design, maintenance or optimisation in all process industries.
This book is a practical guide to the application of control benchmarking to real, complex, industrial processes. The variety of industrial case studies gives the benchmarking ideas presented a robust real-world attitude. The book deals with control engineering principles and economic and management aspects of benchmarking. It shows the reader how to avoid common problems in benchmarking and details the benefits of effective benchmarking.
The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies. . . , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for widerand rapid dissemination. Benchmarking is a technique first applied by Rank Xerox in the late 1970s for business processes. As a subject in the commercial arena, benchmarking thrives with, for example, a European Benchmarking Forum. It has taken rather longer for benchmarking to make the transfer to the technical domain and even now the subject is making a slow headway. Akey research step in this direction was taken by Harris (1989) who used minimum variance control as a benchmark for controller loop assessment. This contribution opened up the area and a significant specialist literature has now developed. Significant support for the methodologywas given by Honeywell who have controller assessment routines in their process control applications software; therefore, it is timely to welcome a (first) monograph on controller performance assessment by Biao Huang and Sirish Shah to the Advances in Industrial Control series.
The field of process control has evolved gradually over the years, with emphasis on key aspects including designing and tuning of controllers. This textbook covers fundamental concepts of basic and multivariable process control, and important monitoring and diagnosis techniques. It discusses topics including state-space models, Laplace transform to convert state-space models to transfer function models, linearity and linearization, inversion formulae, conversion of output to time domain, stability analysis through partial fraction expansion, and stability analysis using Routh table and Nyquits plots. The text also covers basics of relative gain array, multivariable controller design and model predictive control. The text comprehensively covers minimum variable controller (MVC) and minimum variance benchmark with the help of solved examples for better understanding. Fundamentals of diagnosis of control loop problems are also explained and explanations are bolstered through solved examples. Pedagogical features including solved problems and unsolved exercises are interspersed throughout the text for better understanding. The textbook is primarily written for senior undergraduate and graduate students in the field of chemical engineering and biochemical engineering for a course on process control. The textbook will be accompanied by teaching resource such a collection of slides for the course material and a includsolution manual for the instructors.
This book presents the proceedings of the 20th Polish Control Conference. A triennial event that was first held in 1958, the conference successfully combines its long tradition with a modern approach to shed light on problems in control engineering, automation, robotics and a wide range of applications in these disciplines. The book presents new theoretical results concerning the steering of dynamical systems, as well as industrial case studies and worked solutions to real-world problems in contemporary engineering. It particularly focuses on the modelling, identification, analysis and design of automation systems; however, it also addresses the evaluation of their performance, efficiency and reliability. Other topics include fault-tolerant control in robotics, automated manufacturing, mechatronics and industrial systems. Moreover, it discusses data processing and transfer issues, covering a variety of methodologies, including model predictive, robust and adaptive techniques, as well as algebraic and geometric methods, and fractional order calculus approaches. The book also examines essential application areas, such as transportation and autonomous intelligent vehicle systems, robotic arms, mobile manipulators, cyber-physical systems, electric drives and both surface and underwater marine vessels. Lastly, it explores biological and medical applications of the control-theory-inspired methods.
This book focuses on those functionalities that can provide significant improvements in Proportional–integral–derivative (PID) performance in combination with parameter tuning. In particular, the choice of filter to make the controller proper, the use of a feedforward action and the selection of an anti-windup strategy are addressed. The book gives the reader new methods for improving the performance of the most widely applied form of control in industry.
The Encyclopedia of Systems and Control collects a broad range of short expository articles that describe the current state of the art in the central topics of control and systems engineering as well as in many of the related fields in which control is an enabling technology. The editors have assembled the most comprehensive reference possible, and this has been greatly facilitated by the publisher’s commitment continuously to publish updates to the articles as they become available in the future. Although control engineering is now a mature discipline, it remains an area in which there is a great deal of research activity, and as new developments in both theory and applications become available, they will be included in the online version of the encyclopedia. A carefully chosen team of leading authorities in the field has written the well over 250 articles that comprise the work. The topics range from basic principles of feedback in servomechanisms to advanced topics such as the control of Boolean networks and evolutionary game theory. Because the content has been selected to reflect both foundational importance as well as subjects that are of current interest to the research and practitioner communities, a broad readership that includes students, application engineers, and research scientists will find material that is of interest.
The latest update to Bela Liptak's acclaimed "bible" of instrument engineering is now available. Retaining the format that made the previous editions bestsellers in their own right, the fourth edition of Process Control and Optimization continues the tradition of providing quick and easy access to highly practical information. The authors are practicing engineers, not theoretical people from academia, and their from-the-trenches advice has been repeatedly tested in real-life applications. Expanded coverage includes descriptions of overseas manufacturer's products and concepts, model-based optimization in control theory, new major inventions and innovations in control valves, and a full chapter devoted to safety. With more than 2000 graphs, figures, and tables, this all-inclusive encyclopedic volume replaces an entire library with one authoritative reference. The fourth edition brings the content of the previous editions completely up to date, incorporates the developments of the last decade, and broadens the horizons of the work from an American to a global perspective. Béla G. Lipták speaks on Post-Oil Energy Technology on the AT&T Tech Channel.