Download Free Control And Optimization With Pde Constraints Book in PDF and EPUB Free Download. You can read online Control And Optimization With Pde Constraints and write the review.

Solving optimization problems subject to constraints given in terms of partial d- ferential equations (PDEs) with additional constraints on the controls and/or states is one of the most challenging problems in the context of industrial, medical and economical applications, where the transition from model-based numerical si- lations to model-based design and optimal control is crucial. For the treatment of such optimization problems the interaction of optimization techniques and num- ical simulation plays a central role. After proper discretization, the number of op- 3 10 timization variables varies between 10 and 10 . It is only very recently that the enormous advances in computing power have made it possible to attack problems of this size. However, in order to accomplish this task it is crucial to utilize and f- ther explore the speci?c mathematical structure of optimization problems with PDE constraints, and to develop new mathematical approaches concerning mathematical analysis, structure exploiting algorithms, and discretization, with a special focus on prototype applications. The present book provides a modern introduction to the rapidly developing ma- ematical ?eld of optimization with PDE constraints. The ?rst chapter introduces to the analytical background and optimality theory for optimization problems with PDEs. Optimization problems with PDE-constraints are posed in in?nite dim- sional spaces. Therefore, functional analytic techniques, function space theory, as well as existence- and uniqueness results for the underlying PDE are essential to study the existence of optimal solutions and to derive optimality conditions.
Many engineering and scientific problems in design, control, and parameter estimation can be formulated as optimization problems that are governed by partial differential equations (PDEs). The complexities of the PDEs--and the requirement for rapid solution--pose significant difficulties. A particularly challenging class of PDE-constrained optimization problems is characterized by the need for real-time solution, i.e., in time scales that are sufficiently rapid to support simulation-based decision making. Real-Time PDE-Constrained Optimization, the first book devoted to real-time optimization for systems governed by PDEs, focuses on new formulations, methods, and algorithms needed to facilitate real-time, PDE-constrained optimization. In addition to presenting state-of-the-art algorithms and formulations, the text illustrates these algorithms with a diverse set of applications that includes problems in the areas of aerodynamics, biology, fluid dynamics, medicine, chemical processes, homeland security, and structural dynamics. Audience: readers who have expertise in simulation and are interested in incorporating optimization into their simulations, who have expertise in numerical optimization and are interested in adapting optimization methods to the class of infinite-dimensional simulation problems, or who have worked in "offline" optimization contexts and are interested in moving to "online" optimization.
This book introduces, in an accessible way, the basic elements of Numerical PDE-Constrained Optimization, from the derivation of optimality conditions to the design of solution algorithms. Numerical optimization methods in function-spaces and their application to PDE-constrained problems are carefully presented. The developed results are illustrated with several examples, including linear and nonlinear ones. In addition, MATLAB codes, for representative problems, are included. Furthermore, recent results in the emerging field of nonsmooth numerical PDE constrained optimization are also covered. The book provides an overview on the derivation of optimality conditions and on some solution algorithms for problems involving bound constraints, state-constraints, sparse cost functionals and variational inequality constraints.
Optimal design, optimal control, and parameter estimation of systems governed by partial differential equations (PDEs) give rise to a class of problems known as PDE-constrained optimization. The size and complexity of the discretized PDEs often pose significant challenges for contemporary optimization methods. With the maturing of technology for PDE simulation, interest has now increased in PDE-based optimization. The chapters in this volume collectively assess the state of the art in PDE-constrained optimization, identify challenges to optimization presented by modern highly parallel PDE simulation codes, and discuss promising algorithmic and software approaches for addressing them. These contributions represent current research of two strong scientific computing communities, in optimization and PDE simulation. This volume merges perspectives in these two different areas and identifies interesting open questions for further research.
This volume provides a broad and uniform introduction of PDE-constrained optimization as well as to document a number of interesting and challenging applications. Many science and engineering applications necessitate the solution of optimization problems constrained by physical laws that are described by systems of partial differential equations (PDEs)​. As a result, PDE-constrained optimization problems arise in a variety of disciplines including geophysics, earth and climate science, material science, chemical and mechanical engineering, medical imaging and physics. This volume is divided into two parts. The first part provides a comprehensive treatment of PDE-constrained optimization including discussions of problems constrained by PDEs with uncertain inputs and problems constrained by variational inequalities. Special emphasis is placed on algorithm development and numerical computation. In addition, a comprehensive treatment of inverse problems arising in the oil and gas industry is provided. The second part of this volume focuses on the application of PDE-constrained optimization, including problems in optimal control, optimal design, and inverse problems, among other topics.
This book highlights new developments in the wide and growing field of partial differential equations (PDE)-constrained optimization. Optimization problems where the dynamics evolve according to a system of PDEs arise in science, engineering, and economic applications and they can take the form of inverse problems, optimal control problems or optimal design problems. This book covers new theoretical, computational as well as implementation aspects for PDE-constrained optimization problems under uncertainty, in shape optimization, and in feedback control, and it illustrates the new developments on representative problems from a variety of applications.
A cutting-edge guide to modelling complex systems with differential-algebraic equations, suitable for applied mathematicians, engineers and computational scientists.
Many mathematical models of physical, biological and social systems involve partial differential equations (PDEs). The desire to understand and influence these systems naturally leads to considering problems of control and optimization. This book presents important topics in the areas of control of PDEs and of PDE-constrained optimization, covering the full spectrum from analysis to numerical realization and applications. Leading scientists address current topics such as non-smooth optimization, Hamilton–Jacobi–Bellmann equations, issues in optimization and control of stochastic partial differential equations, reduced-order models and domain decomposition, discretization error estimates for optimal control problems, and control of quantum-dynamical systems. These contributions originate from the “International Workshop on Control and Optimization of PDEs” in Mariatrost in October 2011. This book is an excellent resource for students and researchers in control or optimization of differential equations. Readers interested in theory or in numerical algorithms will find this book equally useful.
This special volume focuses on optimization and control of processes governed by partial differential equations. The contributors are mostly participants of the DFG-priority program 1253: Optimization with PDE-constraints which is active since 2006. The book is organized in sections which cover almost the entire spectrum of modern research in this emerging field. Indeed, even though the field of optimal control and optimization for PDE-constrained problems has undergone a dramatic increase of interest during the last four decades, a full theory for nonlinear problems is still lacking. The contributions of this volume, some of which have the character of survey articles, therefore, aim at creating and developing further new ideas for optimization, control and corresponding numerical simulations of systems of possibly coupled nonlinear partial differential equations. The research conducted within this unique network of groups in more than fifteen German universities focuses on novel methods of optimization, control and identification for problems in infinite-dimensional spaces, shape and topology problems, model reduction and adaptivity, discretization concepts and important applications. Besides the theoretical interest, the most prominent question is about the effectiveness of model-based numerical optimization methods for PDEs versus a black-box approach that uses existing codes, often heuristic-based, for optimization.
Optimal control theory is concerned with finding control functions that minimize cost functions for systems described by differential equations. The methods have found widespread applications in aeronautics, mechanical engineering, the life sciences, and many other disciplines. This book focuses on optimal control problems where the state equation is an elliptic or parabolic partial differential equation. Included are topics such as the existence of optimal solutions, necessary optimality conditions and adjoint equations, second-order sufficient conditions, and main principles of selected numerical techniques. It also contains a survey on the Karush-Kuhn-Tucker theory of nonlinear programming in Banach spaces. The exposition begins with control problems with linear equations, quadratic cost functions and control constraints. To make the book self-contained, basic facts on weak solutions of elliptic and parabolic equations are introduced. Principles of functional analysis are introduced and explained as they are needed. Many simple examples illustrate the theory and its hidden difficulties. This start to the book makes it fairly self-contained and suitable for advanced undergraduates or beginning graduate students. Advanced control problems for nonlinear partial differential equations are also discussed. As prerequisites, results on boundedness and continuity of solutions to semilinear elliptic and parabolic equations are addressed. These topics are not yet readily available in books on PDEs, making the exposition also interesting for researchers. Alongside the main theme of the analysis of problems of optimal control, Tröltzsch also discusses numerical techniques. The exposition is confined to brief introductions into the basic ideas in order to give the reader an impression of how the theory can be realized numerically. After reading this book, the reader will be familiar with the main principles of the numerical analysis of PDE-constrained optimization.