Download Free Control And Game Theoretic Methods For Cyber Physical Security Book in PDF and EPUB Free Download. You can read online Control And Game Theoretic Methods For Cyber Physical Security and write the review.

Control-theoretic Methods for Cyber-Physical Security presents novel results on security and defense methodologies applied to cyber-physical systems. This book adopts the viewpoint of control and game theories, modelling these autonomous platforms as dynamical systems and proposing algorithmic frameworks that both proactively and reactively shield the system against catastrophic failures. The algorithms presented employ model-based and data-driven techniques to security, ranging from model-free detection mechanisms to unpredictability-based defense approaches.This book will be a reference to the research community in identifying approaches to security that go beyond robustification techniques and give attention to the tight interplay between the physical and digital devices of the system, providing algorithms that can be readily used in a variety of application domains where the systems are subject to different kinds of attacks. - Serves as a bibliography on different aspects of security in cyber-physical systems - Offers insights into security through innovative approaches, which amalgamate principles from diverse disciplines - Explores unresolved challenges in the security domain, examining them through the lens of rigorous formulations from control and game theory
This book is a printed edition of the Special Issue "New Directions on Model Predictive Control" that was published in Mathematics
This book presents an in-depth overview of recent work related to the safety, security, and privacy of cyber-physical systems (CPSs). It brings together contributions from leading researchers in networked control systems and closely related fields to discuss overarching aspects of safety, security, and privacy; characterization of attacks; and solutions to detecting and mitigating such attacks. The book begins by providing an insightful taxonomy of problems, challenges and techniques related to safety, security, and privacy for CPSs. It then moves through a thorough discussion of various control-based solutions to these challenges, including cooperative fault-tolerant and resilient control and estimation, detection of attacks and security metrics, watermarking and encrypted control, privacy and a novel defense approach based on deception. The book concludes by discussing risk management and cyber-insurance challenges in CPSs, and by presenting the future outlook for this area of research as a whole. Its wide-ranging collection of varied works in the emerging fields of security and privacy in networked control systems makes this book a benefit to both academic researchers and advanced practitioners interested in implementing diverse applications in the fields of IoT, cooperative autonomous vehicles and the smart cities of the future.
This book introduces a cross-layer design to achieve security and resilience for CPSs (Cyber-Physical Systems). The authors interconnect various technical tools and methods to capture the different properties between cyber and physical layers. Part II of this book bridges the gap between cryptography and control-theoretic tools. It develops a bespoke crypto-control framework to address security and resiliency in control and estimation problems where the outsourcing of computations is possible. Part III of this book bridges the gap between game theory and control theory and develops interdependent impact-aware security defense strategies and cyber-aware resilient control strategies. With the rapid development of smart cities, there is a growing need to integrate the physical systems, ranging from large-scale infrastructures to small embedded systems, with networked communications. The integration of the physical and cyber systems forms Cyber-Physical Systems (CPSs), enabling the use of digital information and control technologies to improve the monitoring, operation, and planning of the systems. Despite these advantages, they are vulnerable to cyber-physical attacks, which aim to damage the physical layer through the cyber network. This book also uses case studies from autonomous systems, communication-based train control systems, cyber manufacturing, and robotic systems to illustrate the proposed methodologies. These case studies aim to motivate readers to adopt a cross-layer system perspective toward security and resilience issues of large and complex systems and develop domain-specific solutions to address CPS challenges. A comprehensive suite of solutions to a broad range of technical challenges in secure and resilient control systems are described in this book (many of the findings in this book are useful to anyone working in cybersecurity). Researchers, professors, and advanced-level students working in computer science and engineering will find this book useful as a reference or secondary text. Industry professionals and military workers interested in cybersecurity will also want to purchase this book.
This book constitutes the refereed proceedings of the 7th International Conference on Decision and Game Theory for Security, GameSec 2016, held in New York, NY, USA, in November 2016. The 18 revised full papers presented together with 8 short papers and 5 poster papers were carefully reviewed and selected from 40 submissions. The papers are organized in topical sections on network security; security risks and investments; special track-validating models; decision making for privacy; security games; incentives and cybersecurity mechanisms; and intrusion detection and information limitations in security.
This book is a relevant reference for any readers interested in the security aspects of Cyber-Physical Systems and particularly useful for those looking to keep informed on the latest advances in this dynamic area. Cyber-Physical Systems (CPSs) are characterized by the intrinsic combination of software and physical components. Inherent elements often include wired or wireless data communication, sensor devices, real-time operation and automated control of physical elements. Typical examples of associated application areas include industrial control systems, smart grids, autonomous vehicles and avionics, medial monitoring and robotics. The incarnation of the CPSs can therefore range from considering individual Internet-of-Things devices through to large-scale infrastructures. Presented across ten chapters authored by international researchers in the field from both academia and industry, this book offers a series of high-quality contributions that collectively address and analyze the state of the art in the security of Cyber-Physical Systems and related technologies. The chapters themselves include an effective mix of theory and applied content, supporting an understanding of the underlying security issues in the CPSs domain, alongside related coverage of the technological advances and solutions proposed to address them. The chapters comprising the later portion of the book are specifically focused upon a series of case examples, evidencing how the protection concepts can translate into practical application.
GAME THEORY AND MACHINE LEARNING FOR CYBER SECURITY Move beyond the foundations of machine learning and game theory in cyber security to the latest research in this cutting-edge field In Game Theory and Machine Learning for Cyber Security, a team of expert security researchers delivers a collection of central research contributions from both machine learning and game theory applicable to cybersecurity. The distinguished editors have included resources that address open research questions in game theory and machine learning applied to cyber security systems and examine the strengths and limitations of current game theoretic models for cyber security. Readers will explore the vulnerabilities of traditional machine learning algorithms and how they can be mitigated in an adversarial machine learning approach. The book offers a comprehensive suite of solutions to a broad range of technical issues in applying game theory and machine learning to solve cyber security challenges. Beginning with an introduction to foundational concepts in game theory, machine learning, cyber security, and cyber deception, the editors provide readers with resources that discuss the latest in hypergames, behavioral game theory, adversarial machine learning, generative adversarial networks, and multi-agent reinforcement learning. Readers will also enjoy: A thorough introduction to game theory for cyber deception, including scalable algorithms for identifying stealthy attackers in a game theoretic framework, honeypot allocation over attack graphs, and behavioral games for cyber deception An exploration of game theory for cyber security, including actionable game-theoretic adversarial intervention detection against advanced persistent threats Practical discussions of adversarial machine learning for cyber security, including adversarial machine learning in 5G security and machine learning-driven fault injection in cyber-physical systems In-depth examinations of generative models for cyber security Perfect for researchers, students, and experts in the fields of computer science and engineering, Game Theory and Machine Learning for Cyber Security is also an indispensable resource for industry professionals, military personnel, researchers, faculty, and students with an interest in cyber security.
The chapters in this volume explore how various methods from game theory can be utilized to optimize security and risk-management strategies. Emphasizing the importance of connecting theory and practice, they detail the steps involved in selecting, adapting, and analyzing game-theoretic models in security engineering and provide case studies of successful implementations in different application domains. Practitioners who are not experts in game theory and are uncertain about incorporating it into their work will benefit from this resource, as well as researchers in applied mathematics and computer science interested in current developments and future directions. The first part of the book presents the theoretical basics, covering various different game-theoretic models related to and suitable for security engineering. The second part then shows how these models are adopted, implemented, and analyzed. Surveillance systems, interconnected networks, and power grids are among the different application areas discussed. Finally, in the third part, case studies from business and industry of successful applications of game-theoretic models are presented, and the range of applications discussed is expanded to include such areas as cloud computing, Internet of Things, and water utility networks.
This book focuses on the role of systems and control. Focusing on the current and future development of smart grids in the generation and transmission of energy, it provides an overview of the smart grid control landscape, and the potential impact of the various investigations presented has for technical aspects of power generation and distribution as well as for human and economic concerns such as pricing, consumption and demand management. A tutorial exposition is provided in each chapter, describing the opportunities and challenges that lie ahead. Topics in these chapters include: wide-area control; issues of estimation and integration at the transmission; distribution, consumers, and demand management; and cyber-physical security for smart grid control systems. The contributors describe the problems involved with each topic, and what impact these problems would have if not solved. The tutorial components and the opportunities and challenges detailed make this book ideal for anyone interested in new paradigms for modernized, smart power grids, and anyone in a field where control is applied. More specifically, it is a valuable resource for students studying smart grid control, and for researchers and academics wishing to extend their knowledge of the topic.
The 28 revised full papers presented together with 8 short papers were carefully reviewed and selected from 44 submissions.Among the topical areas covered were: use of game theory; control theory; and mechanism design for security and privacy; decision making for cybersecurity and security requirements engineering; security and privacy for the Internet-of-Things; cyber-physical systems; cloud computing; resilient control systems, and critical infrastructure; pricing; economic incentives; security investments, and cyber insurance for dependable and secure systems; risk assessment and security risk management; security and privacy of wireless and mobile communications, including user location privacy; sociotechnological and behavioral approaches to security; deceptive technologies in cybersecurity and privacy; empirical and experimental studies with game, control, or optimization theory-based analysis for security and privacy; and adversarial machine learning and crowdsourcing, and the role of artificial intelligence in system security.