Download Free Contributions To The Topological Representation Of Bounded Distributive Lattices Book in PDF and EPUB Free Download. You can read online Contributions To The Topological Representation Of Bounded Distributive Lattices and write the review.

Introducing Stone–Priestley duality theory and its applications to logic and theoretical computer science, this book equips graduate students and researchers with the theoretical background necessary for reading and understanding current research in the area. After giving a thorough introduction to the algebraic, topological, logical, and categorical aspects of the theory, the book covers two advanced applications in computer science, namely in domain theory and automata theory. These topics are at the forefront of active research seeking to unify semantic methods with more algorithmic topics in finite model theory. Frequent exercises punctuate the text, with hints and references provided.
This volume represents the state of the art for much current research in many-valued logics. Primary researchers in the field are among the authors. Major methodological issues of many-valued logics are treated, as well as applications of many-valued logics to reasoning with fuzzy information. Areas covered include: Algebras of multiple valued logics and their applications, proof theory and automated deduction in multiple valued logics, fuzzy logics and their applications, and multiple valued logics for control theory and rational belief.
This book is dedicated to the work of Alasdair Urquhart. The book starts out with an introduction to and an overview of Urquhart’s work, and an autobiographical essay by Urquhart. This introductory section is followed by papers on algebraic logic and lattice theory, papers on the complexity of proofs, and papers on philosophical logic and history of logic. The final section of the book contains a response to the papers by Urquhart. Alasdair Urquhart has made extremely important contributions to a variety of fields in logic. He produced some of the earliest work on the semantics of relevant logic. He provided the undecidability of the logics R (of relevant implication) and E (of relevant entailment), as well as some of their close neighbors. He proved that interpolation fails in some of those systems. Urquhart has done very important work in complexity theory, both about the complexity of proofs in classical and some nonclassical logics. In pure algebra, he has produced a representation theorem for lattices and some rather beautiful duality theorems. In addition, he has done important work in the history of logic, especially on Bertrand Russell, including editing Volume four of Russell’s Collected Papers.
A survey of semimodularity that presents theory and applications in discrete mathematics, group theory and universal algebra.
Vols. for 1973- include the following subject areas: Biological sciences, Agriculture, Chemistry, Environmental sciences, Health sciences, Engineering, Mathematics and statistics, Earth sciences, Physics, Education, Psychology, Sociology, Anthropology, History, Law & political science, Business & economics, Geography & regional planning, Language & literature, Fine arts, Library & information science, Mass communications, Music, Philosophy and Religion.