Download Free Contributions To The Theory Of Monte Carlo And Quasi Monte Carlo Methods Book in PDF and EPUB Free Download. You can read online Contributions To The Theory Of Monte Carlo And Quasi Monte Carlo Methods and write the review.

Quasi-Monte Carlo methods, which are often described as deterministic versions of Monte Carlo methods, were introduced in the 1950s by number theoreticians. They improve several deficiencies of Monte Carlo methods; such as providing estimates with deterministic bounds and avoiding the paradoxical difficulty of generating random numbers in a computer. However, they have their own drawbacks. First, although they provide faster convergence than Monte Carlo methods asymptotically, the advantage may not be practical to obtain in "high" dimensional problems. Second, there is not a practical way to measure the error of a quasi-Monte Carlo simulation. Finally, unlike Monte Carlo methods, there is a scarcity of error reduction techniques for these methods. In this dissertation, we attempt to provide remedies for the disadvantages of quasi-Monte Carlo methods mentioned above. In the first part of the dissertation, a hybrid-Monte Carlo sequence designed to obtain error reduction in high dimensions is studied. Probabilistic results on the discrepancy of this sequence as well as results obtained by applying the sequence to problems from numerical integration and mathematical finance are presented. In the second part of the dissertation, a new hybrid-Monte Carlo method is introduced, in an attempt to obtain a practical statistical error analysis using low-discrepancy sequences. It is applied to problems from mathematical finance and particle transport theory to compare its effectiveness with the conventional methods. In the last part of the dissertation, a generalized quasi-Monte Carlo integration rule is introduced. A Koksma-Hlawka type inequality for the rule is proved, using a new concept for the variation of a function. As a consequence of the rule, error reduction techniques and in particular an "importance sampling" type statement are derived. Problems from different disciplines are used as practical tests for our methods. The numerical results obtained in favor of the methods suggest the practical advantages that can be realized by their use in a wide variety of applications.
​This book presents the refereed proceedings of the 13th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Rennes, France, and organized by Inria, in July 2018. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in finance, statistics and computer graphics.
This book presents the refereed proceedings of the Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Leuven (Belgium) in April 2014. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in finance, statistics and computer graphics.
Scientists and engineers are increasingly making use of simulation methods to solve problems which are insoluble by analytical techniques. Monte Carlo methods which make use of probabilistic simulations are frequently used in areas such as numerical integration, complex scheduling, queueing networks, and large-dimensional simulations. This collection of papers arises from a conference held at the University of Nevada, Las Vegas, in 1994. The conference brought together researchers across a range of disciplines whose interests include the theory and application of these methods. This volume provides a timely survey of this field and the new directions in which the field is moving.
This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas. Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars’ GPS systems, in online banking, etc. Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main application areas in Chapters 2-5 and offer a glimpse of advanced results that are presented without proofs and require more advanced mathematical skills. In the last chapter they review several further applications of number theory, ranging from check-digit systems to quantum computation and the organization of raster-graphics memory. Upper-level undergraduates, graduates and researchers in the field of number theory will find this book to be a valuable resource.
Quasi–Monte Carlo methods have become an increasingly popular alternative to Monte Carlo methods over the last two decades. Their successful implementation on practical problems, especially in finance, has motivated the development of several new research areas within this field to which practitioners and researchers from various disciplines currently contribute. This book presents essential tools for using quasi–Monte Carlo sampling in practice. The first part of the book focuses on issues related to Monte Carlo methods—uniform and non-uniform random number generation, variance reduction techniques—but the material is presented to prepare the readers for the next step, which is to replace the random sampling inherent to Monte Carlo by quasi–random sampling. The second part of the book deals with this next step. Several aspects of quasi-Monte Carlo methods are covered, including constructions, randomizations, the use of ANOVA decompositions, and the concept of effective dimension. The third part of the book is devoted to applications in finance and more advanced statistical tools like Markov chain Monte Carlo and sequential Monte Carlo, with a discussion of their quasi–Monte Carlo counterpart. The prerequisites for reading this book are a basic knowledge of statistics and enough mathematical maturity to follow through the various techniques used throughout the book. This text is aimed at graduate students in statistics, management science, operations research, engineering, and applied mathematics. It should also be useful to practitioners who want to learn more about Monte Carlo and quasi–Monte Carlo methods and researchers interested in an up-to-date guide to these methods.
This book presents the refereed proceedings of the Twelfth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at Stanford University (California) in August 2016. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising in particular, in finance, statistics, computer graphics and the solution of PDEs.
Monte Carlo methods have been used for decades in physics, engineering, statistics, and other fields. Monte Carlo Simulation and Finance explains the nuts and bolts of this essential technique used to value derivatives and other securities. Author and educator Don McLeish examines this fundamental process, and discusses important issues, including specialized problems in finance that Monte Carlo and Quasi-Monte Carlo methods can help solve and the different ways Monte Carlo methods can be improved upon. This state-of-the-art book on Monte Carlo simulation methods is ideal for finance professionals and students. Order your copy today.
Tremendous progress has taken place in the related areas of uniform pseudorandom number generation and quasi-Monte Carlo methods in the last five years. This volume contains recent important work in these two areas, and stresses the interplay between them. Some developments contained here have never before appeared in book form. Includes the discussion of the integrated treatment of pseudorandom numbers and quasi-Monte Carlo methods; the systematic development of the theory of lattice rules and the theory of nets and (t,s)-sequences; the construction of new and better low-discrepancy point sets and sequences; Nonlinear congruential methods; the initiation of a systematic study of methods for pseudorandom vector generation; and shift-register pseudorandom numbers. Based on a series of 10 lectures presented by the author at a CBMS-NSF Regional Conference at the University of Alaska at Fairbanks in 1990 to a selected group of researchers, this volume includes background material to make the information more accessible to nonspecialists.
Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, is a volume undertaken by the friends and colleagues of Sid Yakowitz in his honor. Fifty internationally known scholars have collectively contributed 30 papers on modeling uncertainty to this volume. Each of these papers was carefully reviewed and in the majority of cases the original submission was revised before being accepted for publication in the book. The papers cover a great variety of topics in probability, statistics, economics, stochastic optimization, control theory, regression analysis, simulation, stochastic programming, Markov decision process, application in the HIV context, and others. There are papers with a theoretical emphasis and others that focus on applications. A number of papers survey the work in a particular area and in a few papers the authors present their personal view of a topic. It is a book with a considerable number of expository articles, which are accessible to a nonexpert - a graduate student in mathematics, statistics, engineering, and economics departments, or just anyone with some mathematical background who is interested in a preliminary exposition of a particular topic. Many of the papers present the state of the art of a specific area or represent original contributions which advance the present state of knowledge. In sum, it is a book of considerable interest to a broad range of academic researchers and students of stochastic systems.