Download Free Contributions To The History Of Indian Mathematics Book in PDF and EPUB Free Download. You can read online Contributions To The History Of Indian Mathematics and write the review.

This volume consists of a collection of articles based on lectures given by scholars from India, Europe and USA at the sessions on 'History of Indian Mathematics' at the AMS-India mathematics conference in Bangalore during December 2003. These articles cover a wide spectrum of themes in Indian mathematics. They begin with the mathematics of the ancient period dealing with Vedic Prosody and Buddhist Logic, move on to the work of Brahmagupta, of Bhaskara, and that of the mathematicians of the Kerala school of the classical and medieval period, and end with the work of Ramanaujan, and Indian contributions to Quantum Statistics during the modern era. The volume should be of value to those interested in the history of mathematics.
Indian Mathematics gives a unique insight into the history of mathematics within a historical global context. It builds on research into the connection between mathematics and the world-wide advancement of economics and technology. Joseph draws out parallel developments in other cultures and carefully examines the transmission of mathematical ideas across geographical and cultural borders.Accessible to those who have an interest in the global history of mathematical ideas, for the historians, philosophers and sociologists of mathematics, it is a book not to be missed.
This book presents contributions of mathematicians covering topics from ancient India, placing them in the broader context of the history of mathematics. Although the translations of some Sanskrit mathematical texts are available in the literature, Indian contributions are rarely presented in major Western historical works. Yet some of the well-known and universally-accepted discoveries from India, including the concept of zero and the decimal representation of numbers, have made lasting contributions to the foundation of modern mathematics. Through a systematic approach, this book examines these ancient mathematical ideas that were spread throughout India, China, the Islamic world, and Western Europe.
Mathematics in India has a long and impressive history. Presented in chronological order, this book discusses mathematical contributions of Pre-Modern Indian Mathematicians from the Vedic period (800 B.C.) to the 17th Century of the Christian era. These contributions range across the fields of Algebra, Geometry and Trigonometry. The book presents the discussions in a chronological order, covering all the contributions of one Pre-Modern Indian Mathematician to the next. It begins with an overview and summary of previous work done on this subject before exploring specific contributions in exemplary technical detail. This book provides a comprehensive examination of pre-Modern Indian mathematical contributions that will be valuable to mathematicians and mathematical historians. - Contains more than 160 original Sanskrit verses with English translations giving historical context to the contributions - Presents the various proofs step by step to help readers understand - Uses modern, current notations and symbols to develop the calculations and proofs
Based on extensive research in Sanskrit sources, Mathematics in India chronicles the development of mathematical techniques and texts in South Asia from antiquity to the early modern period. Kim Plofker reexamines the few facts about Indian mathematics that have become common knowledge--such as the Indian origin of Arabic numerals--and she sets them in a larger textual and cultural framework. The book details aspects of the subject that have been largely passed over in the past, including the relationships between Indian mathematics and astronomy, and their cross-fertilizations with Islamic scientific traditions. Plofker shows that Indian mathematics appears not as a disconnected set of discoveries, but as a lively, diverse, yet strongly unified discipline, intimately linked to other Indian forms of learning. Far more than in other areas of the history of mathematics, the literature on Indian mathematics reveals huge discrepancies between what researchers generally agree on and what general readers pick up from popular ideas. This book explains with candor the chief controversies causing these discrepancies--both the flaws in many popular claims, and the uncertainties underlying many scholarly conclusions. Supplementing the main narrative are biographical resources for dozens of Indian mathematicians; a guide to key features of Sanskrit for the non-Indologist; and illustrations of manuscripts, inscriptions, and artifacts. Mathematics in India provides a rich and complex understanding of the Indian mathematical tradition. **Author's note: The concept of "computational positivism" in Indian mathematical science, mentioned on p. 120, is due to Prof. Roddam Narasimha and is explored in more detail in some of his works, including "The Indian half of Needham's question: some thoughts on axioms, models, algorithms, and computational positivism" (Interdisciplinary Science Reviews 28, 2003, 1-13).
This book identifies three of the exceptionally fruitful periods of the millennia-long history of the mathematical tradition of India: the very beginning of that tradition in the construction of the now-universal system of decimal numeration and of a framework for planar geometry; a classical period inaugurated by Aryabhata’s invention of trigonometry and his enunciation of the principles of discrete calculus as applied to trigonometric functions; and a final phase that produced, in the work of Madhava, a rigorous infinitesimal calculus of such functions. The main highlight of this book is a detailed examination of these critical phases and their interconnectedness, primarily in mathematical terms but also in relation to their intellectual, cultural and historical contexts. Recent decades have seen a renewal of interest in this history, as manifested in the publication of an increasing number of critical editions and translations of texts, as well as in an informed analytic interpretation of their content by the scholarly community. The result has been the emergence of a more accurate and balanced view of the subject, and the book has attempted to take an account of these nascent insights. As part of an endeavour to promote the new awareness, a special attention has been given to the presentation of proofs of all significant propositions in modern terminology and notation, either directly transcribed from the original texts or by collecting together material from several texts.
This volume is the outcome of a seminar on the history of mathematics held at the Chennai Mathematical Institute during January-February 2008 and contains articles based on the talks of distinguished scholars both from the West and from India. The topics covered include: (1) geometry in the oulvasatras; (2) the origins of zero (which can be traced to ideas of lopa in Paoini's grammar); (3) combinatorial methods in Indian music (which were developed in the context of prosody and subsequently applied to the study of tonal and rhythmic patterns in music); (4) a cross-cultural view of the development of negative numbers (from Brahmagupta (c. 628 CE) to John Wallis (1685 CE); (5) Kunnaka, Bhavana and Cakravala (the techniques developed by Indian mathematicians for the solution of indeterminate equations); (6) the development of calculus in India (covering the millennium-long history of discoveries culminating in the work of the Kerala school giving a complete analysis of the basic calculus of polynomial and trigonometrical functions); (7) recursive methods in Indian mathematics (going back to Paoini's grammar and culminating in the recursive proofs found in the Malayalam text Yuktibhaua (1530 CE)); and (8) planetary and lunar models developed by the Kerala School of Astronomy. The articles in this volume cover a substantial portion of the history of Indian mathematics and astronomy. This book will serve the dual purpose of bringing to the international community a better perspective of the mathematical heritage of India and conveying the message that much work remains to be done, namely the study of many unexplored manuscripts still available in libraries in India and abroad.
The discovery of infinite products by Wallis and infinite series by Newton marked the beginning of the modern mathematical era. It allowed Newton to solve the problem of finding areas under curves defined by algebraic equations, an achievement beyond the scope of the earlier methods of Torricelli, Fermat and Pascal. While Newton and his contemporaries, including Leibniz and the Bernoullis, concentrated on mathematical analysis and physics, Euler's prodigious accomplishments demonstrated that series and products could also address problems in algebra, combinatorics and number theory. In this book, Ranjan Roy describes many facets of the discovery and use of infinite series and products as worked out by their originators, including mathematicians from Asia, Europe and America. The text provides context and motivation for these discoveries, with many detailed proofs, offering a valuable perspective on modern mathematics. Mathematicians, mathematics students, physicists and engineers will all read this book with benefit and enjoyment.
India's mathematicians have made significant contributions over the last 5000 years. From the ever-popular Aryabhata, widely recognized for revolutionizing the number system and Shakuntala Devi, universally admired for her fast mental calculations to pioneers forgotten by time, like Baudhayana, who explained the Pythagoras' theorem nearly 3000 years ago, the figures included in this book are trailblazers in the world of mathematics. Fresh, accessible and inspiring, The Great Indian Mathematicians celebrates persistent mathematicians throughout Indian history. This book is an ideal introduction for the next generation of tenacious and curious maths wizards, and features a goldmine of tips and tricks, nuggets of surprise and much more!