Download Free Continuum Percolation Book in PDF and EPUB Free Download. You can read online Continuum Percolation and write the review.

Many phenomena in physics, chemistry, and biology can be modelled by spatial random processes. One such process is continuum percolation, which is used when the phenomenon being modelled is made up of individual events that overlap, for example, the way individual raindrops eventually make the ground evenly wet. This is a systematic rigorous account of continuum percolation. Two models, the Boolean model and the random connection model, are treated in detail, and related continuum models are discussed. All important techniques and methods are explained and applied to obtain results on the existence of phase transitions, equality and continuity of critical densities, compressions, rarefaction, and other aspects of continuum models. This self-contained treatment, assuming only familiarity with measure theory and basic probability theory, will appeal to students and researchers in probability and stochastic geometry.
This book, first published in 2006, is an account of percolation theory and its ramifications.
The first edition of this book was published in 1994. Since then considerable progress has been made in both theoretical developments of percolation theory, and in its applications. The 2nd edition of this book is a response to such developments. Not only have all of the chapters of the 1st edition been completely rewritten, reorganized, and updated all the way to 2022, but also 8 new chapters have been added that describe extensive new applications, including biological materials, networks and graphs, directed percolation, earthquakes, geochemical processes, and large-scale real world problems, from spread of technology to ad-hoc mobile networks.
Both the beauty and interest of fractures and fracture networks are easy to grasp, since they are abundant in nature. An example is the road from Digne to Nice in the south of France, with an impressive number and variety of such structures: the road for the most part, goes through narrow valleys with fast running streams penetrating the rock faces; erosion is favored by the Mediterranean climate, so that rocks are barely covered by meager vegetation. In this inhospitable and sterile landscape, the visitor can im mediately discover innumerable fractures in great masses which have been distorted by slow, yet powerful movements. This phenomenon can be seen for about 100 kilometers; all kinds of shapes and combinations are repre sented and can be observed either in the mountain itself or in the man-made cliffs and excavations, resulting from improvements made to the road. In the same region, close to the Turini Pass, a real large scale hydrody namic experiment is taking place -a source which is situated on the flank on the mountain, has been equiped with a tap; if the tap is open, water flows through the tap only, but when it is closed, then the side of the mountain releases water in a matter of seconds. Other outlets are also influenced by this tap, such as a water basin situated a few hundred meters away.
An in-depth study of non-crystalline solids in which the arrangement of the atoms do not have long-range order. Describes the way amorphous solids are formed, the phenomenology of the liquid-to-glass and glass- to-liquid transition, and the technological applications. Emphasizes modern approaches such as scaling, localization, and percolation. Includes extensive treatment of structural aspects of amorphous solids, ranging from metallic glasses, to chalcogenides, to organic polymers. Incorporates illustrations for the clarification of physics concepts.
In this unique volume, renowned experts discuss the applications of fractals in petroleum research-offering an excellent introduction to the subject. Contributions cover a broad spectrum of applications from petroleum exploration to production. Papers also illustrate how fractal geometry can quantify the spatial heterogeneity of different aspects of geology and how this information can be used to improve exploration and production results.
In recent years, there has been remarkable growth in the mathematics of random media. The field has deep scientific and technological roots, as well as purely mathematical ones in the theory of stochastic processes. This collection of papers by leading researchers provides an overview of this rapidly developing field. The papers were presented at the 1989 AMS-SIAM Summer Seminar in Applied Mathematics, held at Virginia Polytechnic Institute and State University in Blacksburg, Virginia. In addition to new results on stochastic differential equations and Markov processes, fields whose elegant mathematical techniques are of continuing value in application areas, the conference was organized around four themes: Systems of interacting particles are normally viewed in connection with the fundamental problems of statistical mechanics, but have also been used to model diverse phenomena such as computer architectures and the spread of biological populations. Powerful mathematical techniques have been developed for their analysis, and a number of important systems are now well understood. Random perturbations of dynamical systems have also been used extensively as models in physics, chemistry, biology, and engineering. Among the recent unifying mathematical developments is the theory of large deviations, which enables the accurate calculation of the probabilities of rare events. For these problems, approaches based on effective but formal perturbation techniques parallel rigorous mathematical approaches from probability theory and partial differential equations. The book includes representative papers from forefront research of both types. Effective medium theory, otherwise known as the mathematical theory of homogenization, consists of techniques for predicting the macroscopic properties of materials from an understanding of their microstructures. For example, this theory is fundamental in the science of composites, where it is used for theoretical determination of electrical and mechanical properties. Furthermore, the inverse problem is potentially of great technological importance in the design of composite materials which have been optimized for some specific use. Mathematical theories of the propagation of waves in random media have been used to understand phenomena as diverse as the twinkling of stars, the corruption of data in geophysical exploration, and the quantum mechanics of disordered solids. Especially effective methods now exist for waves in randomly stratified, one-dimensional media. A unifying theme is the mathematical phenomenon of localization, which occurs when a wave propogating into a random medium is attenuated exponentially with propagation distance, with the attenuation caused solely by the mechanism of random multiple scattering. Because of the wide applicability of this field of research, this book would appeal to mathematicians, scientists, and engineers in a wide variety of areas, including probabilistic methods, the theory of disordered materials, systems of interacting particles, the design of materials, and dynamical systems driven by noise. In addition, graduate students and others will find this book useful as an overview of current research in random media.
Why would we wish to start a 2nd edition of “Percolation theory for ?ow in porous media” only two years after the ?rst one was ?nished? There are essentially three reasons: 1) Reviews in the soil physics community have pointed out that the introductory material on percolation theory could have been more accessible. Our additional experience in teaching this material led us to believe that we could improve this aspect of the book. In the context of rewriting the ?rst chapter, however, we also expanded the discussion of Bethe lattices and their relevance for “classical” - ponents of percolation theory, thus giving more of a basis for the discussion of the relevance of hyperscaling. This addition, though it will not tend to make the book more accessible to hydrologists, was useful in making it a more complete reference, and these sections have been marked as being possible to omit in a ?rst reading. It also forced a division of the ?rst chapter into two. We hope that physicists without a background in percolation theory will now also ?nd the - troductory material somewhat more satisfactory. 2) We have done considerable further work on problems of electrical conductivity, thermal conductivity, and electromechanical coupling.
The book introduces readers to and summarizes the current ideas and theories about the basic mechanisms for transport in chaotic flows. Typically no single paradigmatic approach exists as this topic is relevant for fields as diverse as plasma physics, geophysical flows and various branches of engineering. Accordingly, the dispersion of matter in chaotic or turbulent flows is analyzed from different perspectives. Partly based on lecture courses given by the author, this book addresses both graduate students and researchers in search of a high-level but approachable and broad introduction to the topic.