Download Free Continuous Thermal Processing Of Foods Book in PDF and EPUB Free Download. You can read online Continuous Thermal Processing Of Foods and write the review.

This new book updates and expands Harold Burton's classic book, UHT Processing of Milk and Milk Products, to provide comprehensive, state-of-the-art coverage of thermal processing of liquid and particulate foods. The food products covered now include soups, sauces, fruit juices, and other beverages, in addition to milk and milk products. Pasteurization, sterilization, and aseptic processing are all discussed, with emphasis on the underlying principles and problems of heat treatment of more viscous fluids, where streamline flow conditions are likely to prevail, and of products containing particles. Pasteurization and heat treatments designed to further extend the shelf life of pasteurized products are also discussed, and the pasteurization and sterilization processes are compared to highlight similarities and differences. Throughout, factors influencing the safety and quality of heated foods are emphasized. This book contains over 100 illustrations and 50 tables, as well as extensive cross-referencing and a comprehensive reference section.
It has long been recognised that thermal technologies must ensure the safety of food without compromising food quality.
The food industry has utilized automated control systems for over a quarter of a century. However, the past decade has seen an increase in the use of more sophisticated software-driven, on-line control systems, especially in thermal processing unit operations. As these software-driven control systems have become more complex, the need to validate their operation has become more important. In addition to validating new control systems, some food companies have undertaken the more difficult task of validating legacy control systems that have been operating for a number of years on retorts or aseptic systems. Thermal Processing: Control and Automation presents an overview of various facets of thermal processing and packaging from industry, academic, and government representatives. The book contains information that will be valuable not only to a person interested in understanding the fundamental aspects of thermal processing (eg graduate students), but also to those involved in designing the processes (eg process specialists based in food manufacturing) and those who are involved in process filing with USDA or FDA. The book focuses on technical aspects, both from a thermal processing standpoint and from an automation and process control standpoint. Coverage includes established technologies such as retorting as well as emerging technologies such as continuous flow microwave processing. The book addresses both the theoretical and applied aspects of thermal processing, concluding with speculations on future trends and directions.
This is the latest and most authoritative documentation of current scientific knowledge regarding the health effects of thermal food processing. Authors from all over Europe and the USA provide an international perspective, weighing up the risks and benefits. In addition, the contributors outline those areas where further research is necessary.
This long awaited second edition of a popular textbook has a simple and direct approach to the diversity and complexity of food processing. It explains the principles of operations and illustrates them by individual processes. The new edition has been enlarged to include sections on freezing, drying, psychrometry, and a completely new section on mechanical refrigeration. All the units have been converted to SI measure. Each chapter contains unworked examples to help the student gain a grasp of the subject, and although primarily intended for the student food technologist or process engineer, this book will also be useful to technical workers in the food industry
Thermal processing remains the most important method of food preservation in use today, and the scale of the industry is immense. The large scale of these production operations makes it more important than ever that the process is performed perfectly every time: failure will lead to product deterioration and loss of sales at best, and at worst to serious illness or death. This volume is a definitive modern-day reference for all those involved in thermal processing. It covers all of the essential information regarding the preservation of food products by heat. It includes all types of food product, from those high in acid and given a mild heat process to the low-acid sterilised foods that require a full botulinum cook. Different chapters deal with the manufacturing steps from raw material microbiology, through various processing regimes, validation methods, packaging, incubation testing and spoilage incidents. The authors have extensive knowledge of heat preservation covering all parts of the world and represent organisations with formidable reputations in this field. This book is an essential resource for all scientists and technologists in the food manufacturing industry as well as researchers and students of food science and technology.
Thermal processing remains one of the most important processes in the food industry. Now in its second edition, Thermal Food Processing: New Technologies and Quality Issues continues to explore the latest developments in the field. Assembling the work of a worldwide panel of experts, this volume highlights topics vital to the food industry today an
Chapter 1. Status and Trends of Novel Thermal and Non-Thermal Technologies for Fluid Foods -- Chapter 2. Fluid Dynamics in Novel Thermal and Non-Thermal Processes -- Chapter 3. Fluid Rheology in Novel Thermal and Non-Thermal Processes --Chapter 4. Pulsed Electric Field Processing of Fluid Foods -- Chapter 5. High Pressure Processing of Fluid Foods -- Chapter 6. Ultrasound Processing of Fluid Foods -- Chapter 7. Irradiation of Fluid Foods -- Chapter 8. Ultraviolet and Pulsed Light Processing of Fluid Foods -- Chapter 9. Ozone Processing of Fluid Foods -- Chapter 10. Dense Phase Carbon Dioxide Processing of Fluid Foods -- Chapter 11. Ohmic Heating of Fluid Foods -- Chapter 12. Microwave Heating of Fluid Foods -- Chapter 13. Infrared Heating of Fluid Foods -- Chapter 14. Modelling the Kinetics of Microbial and Quality Attributes of Fluid Food during Novel Thermal and Non-Thermal Processes -- Chapter 15. Regulatory and Legislative issues for Thermal and Non-Thermal Technologies: An EU Pers ...
New packaging media such as flexible trays, pouches, and glass containers have superceded traditional canning with great results. The availability of such packaging opportunities has created the demand for products of more challenging rheological behavior that may contain differing degrees of particulate material and hence the need for new designs of heat exchanger. While the primary concern of food manufacturers is the production of safe foods, there is little market for low quality foods no matter how safe they are. The need to maximize process efficiency and final product quality has led to a number of new developments, including refinements in existing technologies and the emergence of new "minimal" techniques. Thermal Technologies in Food Processing reviews all these key developments and looks at future trends, providing an invaluable resource for all food processors.
This text covers the design of food processing equipment based on key unit operations, such as heating, cooling, and drying. In addition, mechanical processing operations such as separations, transport, storage, and packaging of food materials, as well as an introduction to food processes and food processing plants are discussed. Handbook of Food Processing Equipment is an essential reference for food engineers and food technologists working in the food process industries, as well as for designers of process plants. The book also serves as a basic reference for food process engineering students.The chapters cover engineering and economic issues for all important steps in food processing. This research is based on the physical properties of food, the analytical expressions of transport phenomena, and the description of typical equipment used in food processing. Illustrations that explain the structure and operation of industrial food processing equipment are presented. style="font-size: 13.3333330154419px;">The materials of construction and fabrication of food processing equipment are covered here, as well as the selection of the appropriate equipment for various food processing operations. Mechanical processing equipment such as size reduction, size enlargement, homogenization, and mixing are discussed. Mechanical separations equipment such as filters, centrifuges, presses, and solids/air systems, plus equipment for industrial food processing such as heat transfer, evaporation, dehydration, refrigeration, freezing, thermal processing, and dehydration, are presented. Equipment for novel food processes such as high pressure processing, are discussed. The appendices include conversion of units, selected thermophysical properties, plant utilities, and an extensive list of manufacturers and suppliers of food equipment.