Download Free Contextualizing Systems Biology Book in PDF and EPUB Free Download. You can read online Contextualizing Systems Biology and write the review.

This collective monograph aims at contributing to an improved understanding of the epistemic presumptions, sociocultural implications and historically backgrounds of the newly emerging and currently expanding approach of systems biology. In doing so, it offers empirically grounded, valuable and reflexive information about a paradigmatic shift in the biosciences for a wide range of scientists working in the interdisciplinary areas of systems biology, synthetic biology, molecular biology, biology, the philosophy of science, the sociology of science and scientific knowledge, science and technology studies, technology assessment and the like. The authors of this monograph share the theoretical methodological premise that science is a culturally and socially embedded practice which characterizes our culture as a scientific one and at the same time draws its innovative potential from its socio-cultural context. This dialectic relationship lies at the heart of the current development of systems biology which is conceived as a so-called successor of ‘-omics’ research and triggered by high-throughput information technologies. At the same time a need for a holistic conceptualization of complex biological processes emerges. The title Contextualizing Systems Biology suggests that this book analyzes the development and advent of systems biology from different theoretical and methodological perspectives. We investigate a variety of contexts ranging from the analysis of cognitive contexts (such as basic theoretical concepts) to regulative contexts (policies) to the concrete application of a systems biology in the socio-scientific context of a European research project. In empirically analyzing these different and interrelated layers and dimensions of systems biology, the scope of the book goes beyond present attempts to investigate the advent of new approaches in the biological sciences as it frames and assesses systems biology from an interdisciplinary and integrated perspective.
Introduces readers to the state of the art of omics platforms and all aspects of omics approaches for clinical applications This book presents different high throughput omics platforms used to analyze tissue, plasma, and urine. The reader is introduced to state of the art analytical approaches (sample preparation and instrumentation) related to proteomics, peptidomics, transcriptomics, and metabolomics. In addition, the book highlights innovative approaches using bioinformatics, urine miRNAs, and MALDI tissue imaging in the context of clinical applications. Particular emphasis is put on integration of data generated from these different platforms in order to uncover the molecular landscape of diseases. The relevance of each approach to the clinical setting is explained and future applications for patient monitoring or treatment are discussed. Integration of omics Approaches and Systems Biology for Clinical Applications presents an overview of state of the art omics techniques. These methods are employed in order to obtain the comprehensive molecular profile of biological specimens. In addition, computational tools are used for organizing and integrating these multi-source data towards developing molecular models that reflect the pathophysiology of diseases. Investigation of chronic kidney disease (CKD) and bladder cancer are used as test cases. These represent multi-factorial, highly heterogeneous diseases, and are among the most significant health issues in developed countries with a rapidly aging population. The book presents novel insights on CKD and bladder cancer obtained by omics data integration as an example of the application of systems biology in the clinical setting. Describes a range of state of the art omics analytical platforms Covers all aspects of the systems biology approach—from sample preparation to data integration and bioinformatics analysis Contains specific examples of omics methods applied in the investigation of human diseases (Chronic Kidney Disease, Bladder Cancer) Integration of omics Approaches and Systems Biology for Clinical Applications will appeal to a wide spectrum of scientists including biologists, biotechnologists, biochemists, biophysicists, and bioinformaticians working on the different molecular platforms. It is also an excellent text for students interested in these fields.
This book delivers a comprehensive and insightful account of applying mathematical modelling approaches to very large biological systems and networks—a fundamental aspect of computational systems biology. The book covers key modelling paradigms in detail, while at the same time retaining a simplicity that will appeal to those from less quantitative fields. Key Features: A hands-on approach to modelling Covers a broad spectrum of modelling, from static networks to dynamic models and constraint-based models Thoughtful exercises to test and enable understanding of concepts State-of-the-art chapters on exciting new developments, like community modelling and biological circuit design Emphasis on coding and software tools for systems biology Companion website featuring lecture videos, figure slides, codes, supplementary exercises, further reading, and appendices: https://ramanlab.github.io/SysBioBook/ An Introduction to Computational Systems Biology: Systems-Level Modelling of Cellular Networks is highly multi-disciplinary and will appeal to biologists, engineers, computer scientists, mathematicians and others.
Biosimilars have the potential to change the way we think about, identify, and manage health problems. They are already impacting both clinical research and patient care, and this impact will only grow as our understanding and technologies improve. Written by a team of experienced specialists in clinical development, this book discusses various potential drug development strategies, the design and analysis of pharmacokinetics (PK) studies, and the design and analysis of efficacy studies.
The Synthetic Biology Handbook explains the major goals of the field of synthetic biology and presents the technical details of the latest advances made in achieving those goals. Offering a comprehensive overview of the current areas of focus in synthetic biology, this handbook:Explores the standardisation of classic molecular bioscience approaches
A range of views on the morality of synthetic biology and its place in public policy and political discourse. Synthetic biology, which aims to design and build organisms that serve human needs, has potential applications that range from producing biofuels to programming human behavior. The emergence of this new form of biotechnology, however, raises a variety of ethical questions—first and foremost, whether synthetic biology is intrinsically troubling in moral terms. Is it an egregious example of scientists “playing God”? Synthetic Biology and Morality takes on this threshold ethical question, as well as others that follow, offering a range of philosophical and political perspectives on the power of synthetic biology. The contributors consider the basic question of the ethics of making new organisms, with essays that lay out the conceptual terrain and offer opposing views of the intrinsic moral concerns; discuss the possibility that synthetic organisms are inherently valuable; and address whether, and how, moral objections to synthetic biology could be relevant to policy making and political discourse. Variations of these questions have been raised before, in debates over other biotechnologies, but, as this book shows, they take on novel and illuminating form when considered in the context of synthetic biology. Contributors John Basl, Mark A. Bedau, Joachim Boldt, John H. Evans, Bruce Jennings, Gregory E. Kaebnick, Ben Larson, Andrew Lustig, Jon Mandle, Thomas H. Murray, Christopher J. Preston, Ronald Sandler
This book addresses the context-based teaching of science and geography as seen by outstanding specialists from several countries around the world. It starts by providing an updated overview on the relevance of the four main physical and natural sciences (biology, chemistry, geology and physics) as well as geography for educating the public irrespective of whether citizens live (or not) in technologically advanced societies. Afterwards, it discusses unique context-based teaching approaches as well as original context-based curriculum and evaluation material tools. Additionally, the book highlights potential relationships between science and geography, which are often seen as independent areas of knowledge, namely in school. By uncovering the similarities between them and by putting in evidence where both areas deal with issues that are relevant for citizens daily lives, the book explores how contexts act as tools to link and give coherence to science and geography as components of everyday life. The worldwide trend towards providing meaningful science education to all, coupled with the concern raised by students disengagement in sciences, namely in technologically advanced societies, put increasingly high demands on the teachers. As shown in this book, contextualized teaching offers unique insights into how teachers can profit from students complicated and interconnected realities. They can use this knowledge to help them learn about the authenticity and relevance of science and geography. In addition, this book also provides directions for future research if the contribution of geography and science to context-based teaching is to be fully explored. Therefore, it is a book designated for researchers, educators and schoolteachers, as it goes from theoretical perspectives to general research-based approaches and ends with practical applications that may make a difference in the 21st century.
Synthetic biology offers powerful remedies for some of the world’s most intractable problems, but these solutions are clouded by uncertainty and risk that few strategies are available to address. The incentives for continued development of this emerging technology are prodigious and obvious, and the public deserves assurances that all potential downsides are duly considered and minimized accordingly. Incorporating social science analysis within the innovation process may impose constraints, but its simultaneous support in making the end products more acceptable to society at large should be considered a worthy trade-off. Contributing authors in this volume represent diverse perspectives related to synthetic biology’s social sciences, and reflect on different areas of risk analysis and governance that have developed for the field. Such perspectives include leading scholarly discussion pertaining to risk assessment, governance, ethics, and communication. The chapters of this volume note that while the first twenty years of synthetic biology development have focused strongly on technological innovation and product development, the next twenty should emphasize the synergy between developers, policymakers, and publics to generate the most beneficial, well governed, and transparent technologies and products possible. Many chapters in this volume provide new data and approaches that demonstrate the feasibility for multi-stakeholder efforts involving policymakers, regulators, industrial developers, workers, experts, and societal representatives to share responsibilities in the production of effective and acceptable governance in the face of uncertain risk probabilities. A full consideration of such perspectives may prevent a world of draconian regulations based on an insufficient or incomplete understanding of the science that underpins synthetic biology, as well as any hesitancy or fear by the public to adopt its eventual products.
Synthetic Biology provides a framework to examine key enabling components in the emerging area of synthetic biology. Chapters contributed by leaders in the field address tools and methodologies developed for engineering biological systems at many levels, including molecular, pathway, network, whole cell, and multi-cell levels. The book highlights exciting practical applications of synthetic biology such as microbial production of biofuels and drugs, artificial cells, synthetic viruses, and artificial photosynthesis. The roles of computers and computational design are discussed, as well as future prospects in the field, including cell-free synthetic biology and engineering synthetic ecosystems.Synthetic biology is the design and construction of new biological entities, such as enzymes, genetic circuits, and cells, or the redesign of existing biological systems. It builds on the advances in molecular, cell, and systems biology and seeks to transform biology in the same way that synthesis transformed chemistry and integrated circuit design transformed computing. The element that distinguishes synthetic biology from traditional molecular and cellular biology is the focus on the design and construction of core components that can be modeled, understood, and tuned to meet specific performance criteria and the assembly of these smaller parts and devices into larger integrated systems that solve specific biotechnology problems. - Includes contributions from leaders in the field presents examples of ambitious synthetic biology efforts including creation of artificial cells from scratch, cell-free synthesis of chemicals, fuels, and proteins, engineering of artificial photosynthesis for biofuels production, and creation of unnatural living organisms - Describes the latest state-of-the-art tools developed for low-cost synthesis of ever-increasing sizes of DNA and efficient modification of proteins, pathways, and genomes - Highlights key technologies for analyzing biological systems at the genomic, proteomic, and metabolomic levels which are especially valuable in pathway, whole cell, and multi-cell applications - Details mathematical modeling tools and computational tools which can dramatically increase the speed of the design process as well as reduce the cost of development
This book review series presents current trends in modern biotechnology. The aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.