Download Free Contexts For Learning Mathematics Book in PDF and EPUB Free Download. You can read online Contexts For Learning Mathematics and write the review.

Contexts for Learning consists of: Investigations and Resource Guides - workshop structure involves students in inquiring, investigating, discussing, and constructing mathematical solutions and strategies - investigations encourage emergent learning and highlight the developmental landmarks in mathematical thinking - strings of related problems develop students' deep number sense and expand their strategies for mental arithmetic Read-Aloud Books and Posters - create rich, imaginable contexts--realistic and fictional--for mathematics investigations - are carefully crafted to support the development of the big ideas, strategies, and models - encourage children to explore and generate patterns, generalize, and develop the ability to mathematize their worlds Resources for Contexts for Learning CD-ROM - author videos describe the series' philosophy and organization - video overviews show classroom footage of a math workshop, including minilessons, investigations, and a math congress - print resources include research base, posters, and templates
This book is the result of research from over fifteen countries, asking which background and environmental factors influence achievement in mathematics and science. This research is based on data from the Third International Mathematics and Science Study (TIMSS), which was conducted under the auspices of the International Association for the Evaluation of Educational Achievement (IEA) in 1995 and 1998. In many countries researchers have started secondary analysis of the data in search for relationships between contextual factors and achievement. In these analyses two different approaches can be distinguished, which can be characterised by the metaphors of ‘fishing’ and ‘hunting’. In the ‘fishing’ approach, researchers begin with an open mind, considering all possible context variables as potentially influential. Applying analysis techniques such as regression analysis, Lisrel, PLS, HLM, and MLN, they then identify important factors within their countries or across a number of countries. In the ‘hunting’ approach, researchers hypothesise certain context variables and trace the effect of these variables on mathematics and/or science achievement.
Building learning around rich, instructionally sound contexts was an overarching goal during the development of the Contexts for Learning Mathematics series. Throughout the series context is used to set the stage for learning. It establishes a terrain that will intrigue children and ignite their imaginations. The contexts are situations children can imagine - either realistic or fictional - that enable them to reflect on what they are doing and apply mathematical thinking to their own world. Contexts for investigations are typically developed with stories and pictures. These are carefully crafted to involve students in meaningful investigations of the big ideas, strategies, and models that shape mathematical thinking. - The images and texts are engaging and include age-appropriate children using mathematics to solve real-world problems. - The numbers referenced represent landmark numbers or number relationships that are significant and telling. - The models and metaphors within a context make relationships and strategies more tangible and explicit. The contexts for the eight units in Investigating Number Sense, Addition, and Subtraction (Grades K - 3) are established through eight engaging read-aloud books (15" x 12") that meld humor, intrigue, and good math sense. To learn more visit www.contextsforlearning.com
Using strengths-based approaches to support development in mathematics It’s time to re-imagine what’s possible and celebrate the brilliance multilingual learners bring to today’s classrooms. Innovative teaching strategies can position these learners as leaders in mathematics. Yet, as the number of multilingual learners in North American schools grows, many teachers have not had opportunities to gain the competencies required to teach these learners effectively, especially in disciplines such as mathematics. Multilingual learners—historically called English Language Learners—are expected to interpret the meaning of problems, analyze, make conjectures, evaluate their progress, and discuss and understand their own approaches and the approaches of their peers in mathematics classrooms. Thus, language plays a vital role in mathematics learning, and demonstrating these competencies in a second (or third) language is a challenging endeavor. Based on best practices and the authors’ years of research, this guide offers practical approaches that equip grades K-8 teachers to draw on the strengths of multilingual learners, partner with their families, and position these learners for success. Readers will find: • A focus on multilingual students as leaders • A strength-based approach that draws on students’ life experiences and cultural backgrounds • An emphasis on maintaining high expectations for learners’ capacity for mastering rigorous content • Strategies for representing concepts in different formats • Stop and Think questions throughout and reflection questions at the end of each chapter • Try It! Implementation activities, student work examples, and classroom transcripts With case studies and activities that provide a solid foundation for teachers’ growth and exploration, this groundbreaking book will help teachers and teacher educators engage in meaningful, humanized mathematics instruction.
"This book is a game changer! Strengths-Based Teaching and Learning in Mathematics: 5 Teaching Turnarounds for Grades K- 6 goes beyond simply providing information by sharing a pathway for changing practice. . . Focusing on our students’ strengths should be routine and can be lost in the day-to-day teaching demands. A teacher using these approaches can change the trajectory of students’ lives forever. All teachers need this resource! Connie S. Schrock Emporia State University National Council of Supervisors of Mathematics President, 2017-2019 NEW COVID RESOURCES ADDED: A Parent’s Toolkit to Strengths-Based Learning in Math is now available on the book’s companion website to support families engaged in math learning at home. This toolkit provides a variety of home-based activities and games for families to engage in together. Your game plan for unlocking mathematics by focusing on students’ strengths. We often evaluate student thinking and their work from a deficit point of view, particularly in mathematics, where many teachers have been taught that their role is to diagnose and eradicate students’ misconceptions. But what if instead of focusing on what students don’t know or haven’t mastered, we identify their mathematical strengths and build next instructional steps on students’ points of power? Beth McCord Kobett and Karen S. Karp answer this question and others by highlighting five key teaching turnarounds for improving students’ mathematics learning: identify teaching strengths, discover and leverage students’ strengths, design instruction from a strengths-based perspective, help students identify their points of power, and promote strengths in the school community and at home. Each chapter provides opportunities to stop and consider current practice, reflect, and transfer practice while also sharing · Downloadable resources, activities, and tools · Examples of student work within Grades K–6 · Real teachers’ notes and reflections for discussion It’s time to turn around our approach to mathematics instruction, end deficit thinking, and nurture each student’s mathematical strengths by emphasizing what makes them each unique and powerful.
Early childhood mathematics is vitally important for young children's present and future educational success. Research demonstrates that virtually all young children have the capability to learn and become competent in mathematics. Furthermore, young children enjoy their early informal experiences with mathematics. Unfortunately, many children's potential in mathematics is not fully realized, especially those children who are economically disadvantaged. This is due, in part, to a lack of opportunities to learn mathematics in early childhood settings or through everyday experiences in the home and in their communities. Improvements in early childhood mathematics education can provide young children with the foundation for school success. Relying on a comprehensive review of the research, Mathematics Learning in Early Childhood lays out the critical areas that should be the focus of young children's early mathematics education, explores the extent to which they are currently being incorporated in early childhood settings, and identifies the changes needed to improve the quality of mathematics experiences for young children. This book serves as a call to action to improve the state of early childhood mathematics. It will be especially useful for policy makers and practitioners-those who work directly with children and their families in shaping the policies that affect the education of young children.
Contexts for Learning consists of: Investigations and Resource Guides - workshop structure involves students in inquiring, investigating, discussing, and constructing mathematical solutions and strategies - investigations encourage emergent learning and highlight the developmental landmarks in mathematical thinking - strings of related problems develop students' deep number sense and expand their strategies for mental arithmetic Read-Aloud Books and Posters - create rich, imaginable contexts--realistic and fictional--for mathematics investigations - are carefully crafted to support the development of the big ideas, strategies, and models - encourage children to explore and generate patterns, generalize, and develop the ability to mathematize their worlds Resources for Contexts for Learning CD-ROM - author videos describe the series' philosophy and organization - video overviews show classroom footage of a math workshop, including minilessons, investigations, and a math congress - print resources include research base, posters, and templates
This book focuses on how to improve the teaching and learning of primary level mathematics education within resource-constrained contexts. It builds on two large numeracy projects within South Africa which speak to broader, global concerns and highlight how research and development not only enables one to meet ethical imperatives but also explore how further interventions can be developed. Teacher and research communities must work together to create mutually beneficial relationships and establish a cohesive understanding of the requirements of primary mathematics education.
Results from national and international assessments indicate that school children in the United States are not learning mathematics well enough. Many students cannot correctly apply computational algorithms to solve problems. Their understanding and use of decimals and fractions are especially weak. Indeed, helping all children succeed in mathematics is an imperative national goal. However, for our youth to succeed, we need to change how we're teaching this discipline. Helping Children Learn Mathematics provides comprehensive and reliable information that will guide efforts to improve school mathematics from pre-kindergarten through eighth grade. The authors explain the five strands of mathematical proficiency and discuss the major changes that need to be made in mathematics instruction, instructional materials, assessments, teacher education, and the broader educational system and answers some of the frequently asked questions when it comes to mathematics instruction. The book concludes by providing recommended actions for parents and caregivers, teachers, administrators, and policy makers, stressing the importance that everyone work together to ensure a mathematically literate society.
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.