Download Free Contemporarys Breakthroughs In Math Book 1 Book in PDF and EPUB Free Download. You can read online Contemporarys Breakthroughs In Math Book 1 and write the review.

Help students break through to concepts in content-area reading Content-area reading skills help students understand their textbooks Pre- and post-test work lets students focus on strengths and weaknesses Special exercises encourage analysis, synthesis, evaluation, and application These are the tools you need for students to work through problems until they can master the concepts (and not just the skills) each subject area requires. More than just simple repetition, these books are designed to guide students to their own intellectual breakthroughs.
Richard Elwes is a writer, teacher and researcher in Mathematics, visiting fellow at the University of Leeds, and contributor to numerous popular science magazines. He is a committed and recognized popularizer of mathematics. Of Elwes, Sonder Books 2011 Standouts said, "Dr. Elwes is brilliant at giving the reader the broad perspective, with enough details to fascinate, rather than confuse." Math in 100 Key Breakthroughs offers a series of short, clear-eyed essays explaining the fundamentals of the mathematical concepts everyone should know. Professor Richard Elwes profiles the most important, groundbreaking, and astonishing discoveries, which together have profoundly influenced our understanding of the universe. From the origins of counting--traced back to more than 35,000 years ago--to such contemporary breakthroughs as Wiles' Proof of Fermat's Last Theorem and Cook & Woolfram's Rule 110, this compulsively readable book tells the story of discovery, invention, and inspiration that have led to humankind's most important mathematical achievements.
Landscape of 21st Century Mathematics offers a detailed cross section of contemporary mathematics. Important results of the 21st century are motivated and formulated, providing an overview of recent progress in the discipline. The theorems presented in this book have been selected among recent achievements whose statements can be fully appreciated without extensive background. Grouped by subject, the selected theorems represent all major areas of mathematics: number theory, combinatorics, analysis, algebra, geometry and topology, probability and statistics, algorithms and complexity, and logic and set theory. The presentation is self-contained with context, background and necessary definitions provided for each theorem, all without sacrificing mathematical rigour. Where feasible, brief indications of the main ideas of a proof are given. Rigorous yet accessible, this book presents an array of breathtaking recent advances in mathematics. It is written for everyone with a background in mathematics, from inquisitive university students to mathematicians curious about recent achievements in areas beyond their own.
Breakthroughs helps students master the essentials of math and problem-solving, sharpens critical-thinking skills for social studies, science, and reading, and develops effective writing skills. Breakthroughs in Writing and Language provides grammar and mechanics instruction integrated with writing activities.
Workbook to assist instructors with teaching basic numeration.
In 2006, an eccentric Russian mathematician named Grigori Perelman solved one of the world's greatest intellectual puzzles. The Poincare conjecture is an extremely complex topological problem that had eluded the best minds for over a century. In 2000, the Clay Institute in Boston named it one of seven great unsolved mathematical problems, and promised a million dollars to anyone who could find a solution. Perelman was awarded the prize this year - and declined the money. Journalist Masha Gessen was determined to find out why. Drawing on interviews with Perelman's teachers, classmates, coaches, teammates, and colleagues in Russia and the US - and informed by her own background as a math whiz raised in Russia - she set out to uncover the nature of Perelman's astonishing abilities. In telling his story, Masha Gessen has constructed a gripping and tragic tale that sheds rare light on the unique burden of genius.
A panoramic survey of the vast spectrum of modern and contemporary mathematics and the new philosophical possibilities they suggest. A panoramic survey of the vast spectrum of modern and contemporary mathematics and the new philosophical possibilities they suggest, this book gives the inquisitive non-specialist an insight into the conceptual transformations and intellectual orientations of modern and contemporary mathematics. The predominant analytic approach, with its focus on the formal, the elementary and the foundational, has effectively divorced philosophy from the real practice of mathematics and the profound conceptual shifts in the discipline over the last century. The first part discusses the specificity of modern (1830–1950) and contemporary (1950 to the present) mathematics, and reviews the failure of mainstream philosophy of mathematics to address this specificity. Building on the work of the few exceptional thinkers to have engaged with the “real mathematics” of their era (including Lautman, Deleuze, Badiou, de Lorenzo and Châtelet), Zalamea challenges philosophy's self-imposed ignorance of the “making of mathematics.” In the second part, thirteen detailed case studies examine the greatest creators in the field, mapping the central advances accomplished in mathematics over the last half-century, exploring in vivid detail the characteristic creative gestures of modern master Grothendieck and contemporary creators including Lawvere, Shelah, Connes, and Freyd. Drawing on these concrete examples, and oriented by a unique philosophical constellation (Peirce, Lautman, Merleau-Ponty), in the third part Zalamea sets out the program for a sophisticated new epistemology, one that will avail itself of the powerful conceptual instruments forged by the mathematical mind, but which have until now remained largely neglected by philosophers.
This book is a well-informed and detailed analysis of the problems and development of algebraic topology, from Poincaré and Brouwer to Serre, Adams, and Thom. The author has examined each significant paper along this route and describes the steps and strategy of its proofs and its relation to other work. Previously, the history of the many technical developments of 20th-century mathematics had seemed to present insuperable obstacles to scholarship. This book demonstrates in the case of topology how these obstacles can be overcome, with enlightening results.... Within its chosen boundaries the coverage of this book is superb. Read it! —MathSciNet