Download Free Contact Dynamics Book in PDF and EPUB Free Download. You can read online Contact Dynamics and write the review.

This book analyzes several compliant contact force models within the context of multibody dynamics, while also revisiting the main issues associated with fundamental contact mechanics. In particular, it presents various contact force models, from linear to nonlinear, from purely elastic to dissipative, and describes their parameters. Addressing the different numerical methods and algorithms for contact problems in multibody systems, the book describes the gross motion of multibody systems by using a two-dimensional formulation based on the absolute coordinates and employs different contact models to represent contact-impact events. Results for selected planar multibody mechanical systems are presented and utilized to discuss the main assumptions and procedures adopted throughout this work. The material provided here indicates that the prediction of the dynamic behavior of mechanical systems involving contact-impact strongly depends on the choice of contact force model. In short, the book provides a comprehensive resource for the multibody dynamics community and beyond on modeling contact forces and the dynamics of mechanical systems undergoing contact-impact events.
The volume introduces basic concepts necessary for a modern treatment of inequality problems in finite degree of freedom dynamics. Tools from convex analysis, by now well established in non-smooth mechanics, are used to formulate the constitutive equations and impact laws. The lectures cover a broad area of non-smooth dynamics from primal and dual energy functions in variational and differential form to application problems as chimney dampers or vibration conveyors. This includes frictional oscillations with bifurcation scenarios as well as analogies to small displacement quasi-static problems. The course is on an advanced level, designed primarily for postgraduate students, but should also be of value for scientists working on dynamic complementarity problems.
This volume describes the application of the method of the differential specific forces (MDSF). By using this new method, the solutions to the problems of a dissipative viscoelastic and elastic-plastic contacts between curvilinear surfaces of two solid bodies can be found. The novelty is that the forces of viscosity and the forces of elasticity can be found by an integration of the differential specific forces acting inside an elementary volume of the contact zone. This volume shows that this method allows finding the viscoelastic forces for any theoretical or experimental dependencies between the distance of mutual approach of two curvilinear surfaces and the radiuses of the contact area. Also, the derivation of the integral equations of the viscoelastic forces has been given and the equations for the contact pressure have been obtained. The viscoelastic and elastic-plastic contacts at impact between two spherical bodies have been examined. The equations for work and energy in the phases of compression and restitution and at the rolling shear have been obtained. Approximate solutions for the differential equations of movement (displacement) by using the method of equivalent work have been calculated. This new method of differential specific viscoelastic forces allows us to find the equations for all viscoelastic forces. It is principally different from other methods that use Hertz’s theory, the classical theory of elasticity and the tensor algebra. This method will be useful in research of contact dynamics of any shape of contacting surfaces. It also can be used for determination of the dynamic mechanical properties of materials and in the design of wear-resistant elements and coverings for components of machines and equipment that are in harsh conditions where they are subjected to the action of flow or jet abrasive particles. This volume will be useful for professional designers of machines and mechanisms as well as for the design and development of new advanced materials, such as wear-resistant elastic coatings and elements for pneumatic and hydraulic systems, stop valves, fans, centrifugal pumps, injectors, valves, gate valves, and in other installations.
This book is devoted to the Discrete Element Method (DEM) technique, a discontinuum modelling approach that takes into account the fact that granular materials are composed of discrete particles which interact with each other at the microscale level. This numerical simulation technique can be used both for dispersed systems in which the particle-particle interactions are collisional and compact systems of particles with multiple enduring contacts. The book provides an extensive and detailed explanation of the theoretical background of DEM. Contact mechanics theories for elastic, elastic-plastic, adhesive elastic and adhesive elastic-plastic particle-particle interactions are presented. Other contact force models are also discussed, including corrections to some of these models as described in the literature, and important areas of further research are identified. A key issue in DEM simulations is whether or not a code can reliably simulate the simplest of systems, namely the single particle oblique impact with a wall. This is discussed using the output obtained from the contact force models described earlier, which are compared for elastic and inelastic collisions. In addition, further insight is provided for the impact of adhesive particles. The author then moves on to provide the results of selected DEM applications to agglomerate impacts, fluidised beds and quasi-static deformation, demonstrating that the DEM technique can be used (i) to mimic experiments, (ii) explore parameter sweeps, including limiting values, or (iii) identify new, previously unknown, phenomena at the microscale. In the DEM applications the emphasis is on discovering new information that enhances our rational understanding of particle systems, which may be more significant than developing a new continuum model that encompasses all microstructural aspects, which would most likely prove too complicated for practical implementation. The book will be of interest to academic and industrial researchers working in particle technology/process engineering and geomechanics, both experimentalists and theoreticians.
Open publication The volume deals with previously undescribed morphosyntactic variations and changes appearing in settings involving language contact. Contact-induced changes are defined as dynamic and multiple, involving internal change as well as historical and sociolinguistic factors. A variety of explanations are identified and their relationships are analyzed. Only a multifaceted methodology enables this fine-grained approach to contact-induced change. A range of methodologies are proposed, but the chapters generally have their roots in a typological perspective. The contributors recognize the precautionary principle: for example, they emphasize the difficulty of studying languages that have not been described adequately and for which diachronic data are not extensive or reliable. Three main perspectives on contact-induced language change are presented. The first explores the role of multilingual speakers in contact-induced language change, especially their spontaneous innovations in discourse. The second explores the differences between ordinary contact-induced change and change in endangered languages. The third discusses various aspects of the relationship between contact-induced change and internal change.
Discusses disparate findings to examine the dynamics of contact between languages in an immigrant context.
Research and theory on intergroup contact have become one of the fastest advancing and most exciting fields in social psychology in recent years. The work is exciting because it combines basic social psychological concerns -- human interaction, situational influences on behavior -- with an effective means of improving intergroup relations at a time when the world is witnessing widespread intergroup hatred and strife. This volume provides an overview of this rapidly progressing area of investigation – its origins and early work, its current status and recent developments, along with criticisms of this work and suggestions for future directions. It covers a range of research findings involving contact between groups drawn from the authors’ extensive meta-analysis of 515 published studies on intergroup contact. This meta-analysis, together with the authors’ renowned research on intergroup contact, provides a solid foundation and broad overview of the field, to which have been added discussions of research extensions and emerging directions. When Groups Meet is a rich, comprehensive overview of classic and contemporary work on intergroup contact, and provides insights into where this work is headed in the future. For research specialists, this volume not only serves as a sourcebook for research and theory on intergroup contact, it also provides the entire 515-item bibliography from the meta-analysis. The clear structure and accessible writing style will also appeal to advanced undergraduate and graduate students in psychology and other social sciences.
Nuclear Architecture and Dynamics provides a definitive resource for (bio)physicists and molecular and cellular biologists whose research involves an understanding of the organization of the genome and the mechanisms of its proper reading, maintenance, and replication by the cell. This book brings together the biochemical and physical characteristics of genome organization, providing a relevant framework in which to interpret the control of gene expression and cell differentiation. It includes work from a group of international experts, including biologists, physicists, mathematicians, and bioinformaticians who have come together for a comprehensive presentation of the current developments in the nuclear dynamics and architecture field. The book provides the uninitiated with an entry point to a highly dynamic, but complex issue, and the expert with an opportunity to have a fresh look at the viewpoints advocated by researchers from different disciplines. - Highlights the link between the (bio)chemistry and the (bio)physics of chromatin - Deciphers the complex interplay between numerous biochemical factors at task in the nucleus and the physical state of chromatin - Provides a collective view of the field by a large, diverse group of authors with both physics and biology backgrounds
The definitive book on tire mechanics by the acknowledged world expert - Covers everything you need to know about pneumatic tires and their impact on vehicle performance, including mathematic modeling and its practical application - Written by the acknowledged world authority on the topic and the name behind the most widely used model, Pacejka's 'Magic Formula' - Updated with the latest information on new and evolving tire models to ensure you can select the right model for your needs, apply it appropriately and understand its limitations In this well-known resource, leading tire model expert Hans Pacejka explains the relationship between operational variables, vehicle variables and tire modeling, taking you on a journey through the effective modeling of complex tire and vehicle dynamics problems. Covering the latest developments to Pacejka's own industry-leading model as well as the widely-used models of other pioneers in the field, the book combines theory, guidance, discussion and insight in one comprehensive reference. While the details of individual tire models are available in technical papers published by SAE, FISITA and other automotive organizations, Tire and Vehicle Dynamics remains the only reliable collection of information on the topic and the standard go-to resource for any engineer or researcher working in the area. - New edition of the definitive book on tire mechanics, by the acknowledged world authority on the topic - Covers everything an automotive engineer needs to know about pneumatic tires and their impact on vehicle performance, including mathematic modelling and its practical application - Most vehicle manufacturers use what is commonly known as Pacejka's 'Magic Formula', the tire model developed and presented in this book
Many physical systems require the description of mechanical interaction across interfaces if they are to be successfully analyzed. Examples in the engineered world range from the design of prosthetics in biomedical engi neering (e. g. , hip replacements); to characterization of the response and durability of head/disk interfaces in computer magnetic storage devices; to development of pneumatic tires with better handling characteristics and increased longevity in automotive engineering; to description of the adhe sion and/or relative slip between concrete and reinforcing steel in structural engineering. Such mechanical interactions, often called contact/impact in teractions, usually necessitate at minimum the determination of areas over which compressive pressures must act to prevent interpenetration of the mechanical entities involved. Depending on the application, frictional be havior, transient interaction of interfaces with their surroundings (e. g. , in termittent stick/slip), thermo-mechanical coupling, interaction with an in tervening lubricant and/or fluid layer, and damage of the interface (i. e. , wear) may also be featured. When taken together (or even separately!), these features have the effect of making the equations of mechanical evolu tion not only highly nonlinear, but highly nonsmooth as well. While many modern engineering simulation packages possess impressive capabilities in the general area of nonlinear mechanics, it can be contended that methodologies typically utilized for contact interactions are relatively immature in comparison to other components of a nonlinear finite element package, such as large deformation kinematics, inelastic material modeling, nonlinear equation solving, or linear solver technology.