Download Free Constructive Fractional Analysis With Applications Book in PDF and EPUB Free Download. You can read online Constructive Fractional Analysis With Applications and write the review.

This book includes constructive approximation theory; it presents ordinary and fractional approximations by positive sublinear operators, and high order approximation by multivariate generalized Picard, Gauss–Weierstrass, Poisson–Cauchy and trigonometric singular integrals. Constructive and Computational Fractional Analysis recently is more and more in the center of mathematics because of their great applications in the real world. In this book, all presented is original work by the author given at a very general level to cover a maximum number of cases in various applications. The author applies generalized fractional differentiation techniques of Riemann–Liouville, Caputo and Canavati types and of fractional variable order to various kinds of inequalities such as of Opial, Hardy, Hilbert–Pachpatte and on the spherical shell. He continues with E. R. Love left- and right-side fractional integral inequalities. They follow fractional Landau inequalities, of left and right sides, univariate and multivariate, including ones for Semigroups. These are developed to all possible directions, and right-side multivariate fractional Taylor formulae are proven for the purpose. It continues with several Gronwall fractional inequalities of variable order. This book results are expected to find applications in many areas of pure and applied mathematics. As such this book is suitable for researchers, graduate students and seminars of the above disciplines, also to be in all science and engineering libraries.
Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.
This book provides a broad overview of the latest developments in fractional calculus and fractional differential equations (FDEs) with an aim to motivate the readers to venture into these areas. It also presents original research describing the fractional operators of variable order, fractional-order delay differential equations, chaos and related phenomena in detail. Selected results on the stability of solutions of nonlinear dynamical systems of the non-commensurate fractional order have also been included. Furthermore, artificial neural network and fractional differential equations are elaborated on; and new transform methods (for example, Sumudu methods) and how they can be employed to solve fractional partial differential equations are discussed. The book covers the latest research on a variety of topics, including: comparison of various numerical methods for solving FDEs, the Adomian decomposition method and its applications to fractional versions of the classical Poisson processes, variable-order fractional operators, fractional variational principles, fractional delay differential equations, fractional-order dynamical systems and stability analysis, inequalities and comparison theorems in FDEs, artificial neural network approximation for fractional operators, and new transform methods for solving partial FDEs. Given its scope and level of detail, the book will be an invaluable asset for researchers working in these areas.
This book employs an abstract kernel fractional calculus with applications to Prabhakar and non-singular kernel fractional calculi. The results are univariate and bivariate. In the univariate case, abstract fractional monotone approximation by polynomials and splines is presented. In the bivariate case, the abstract fractional monotone constrained approximation by bivariate pseudo-polynomials and polynomials is given. This book’s results are expected to find applications in many areas of pure and applied mathematics, especially in fractional approximation and fractional differential equations. Other interesting applications are applied in sciences like geophysics, physics, chemistry, economics, and engineering. This book is appropriate for researchers, graduate students, practitioners, and seminars of the above disciplines.
This book presents generalized Caputo fractional Ostrowski and Grüss-type inequalities involving several Banach algebra valued functions. Furthermore, the author gives generalized Canavati fractional Ostrowski, Opial, Grüss, and Hilbert-Pachpatte-type inequalities for multiple Banach algebra valued functions. By applying the p-Schatten norms over the von Neumann–Schatten classes, the author produces the analogous refined and interesting inequalities. The author provides many applications. This book’s results are expected to find applications in many areas of pure and applied mathematics, especially in fractional inequalities and fractional differential equations. Other interesting applications are in applied sciences like geophysics, physics, chemistry, economics, and engineering. This book is appropriate for researchers, graduate students, practitioners, and seminars of the above disciplines, also to be in all science and engineering libraries.
Recent Trends in Fractional Calculus and Its Applications addresses the answer to this very basic question: "Why is Fractional Calculus important?" Until recent times, Fractional Calculus was considered as a rather esoteric mathematical theory without applications, but in the last few decades there has been an explosion of research activities on the application of Fractional Calculus to very diverse scientific fields ranging from the physics of diffusion and advection phenomena, to control systems to finance and economics. An important part of mathematical modelling of objects and processes is a description of their dynamics.The term Fractional Calculus is more than 300 years old. It is a generalization of the ordinary differentiation and integration to noninteger (arbitrary) order. The subject is as old as the calculus of differentiation and goes back to times when Leibniz, Gauss, and Newton invented this kind of calculation. Several mathematicians contributed to this subject over the years. People like Liouville, Riemann, and Weyl made major contributions to the theory of Fractional Calculus. In recent decades the field of Fractional Calculus has attracted the interest of researchers in several areas, including mathematics, physics, chemistry, engineering, finance, and social sciences. - Provides the most recent and up-to-date developments in the Fractional Calculus and its application areas - Presents pre-preparation ideas to help researchers/scientists/clinicians face the new challenges in the application of fractional differential equations - Helps researchers and scientists understand the importance of the Fractional Calculus to solve many problems in Biomedical Engineering and applied sciences
This book focuses on computational and fractional analysis, two areas that are very important in their own right, and which are used in a broad variety of real-world applications. We start with the important Iyengar type inequalities and we continue with Choquet integral analytical inequalities, which are involved in major applications in economics. In turn, we address the local fractional derivatives of Riemann–Liouville type and related results including inequalities. We examine the case of low order Riemann–Liouville fractional derivatives and inequalities without initial conditions, together with related approximations. In the next section, we discuss quantitative complex approximation theory by operators and various important complex fractional inequalities. We also cover the conformable fractional approximation of Csiszar’s well-known f-divergence, and present conformable fractional self-adjoint operator inequalities. We continue by investigating new local fractional M-derivatives that share all the basic properties of ordinary derivatives. In closing, we discuss the new complex multivariate Taylor formula with integral remainder. Sharing results that can be applied in various areas of pure and applied mathematics, the book offers a valuable resource for researchers and graduate students, and can be used to support seminars in related fields.
In this book, we introduce the parametrized, deformed and general activation function of neural networks. The parametrized activation function kills much less neurons than the original one. The asymmetry of the brain is best expressed by deformed activation functions. Along with a great variety of activation functions, general activation functions are also engaged. Thus, in this book, all presented is original work by the author given at a very general level to cover a maximum number of different kinds of neural networks: giving ordinary, fractional, fuzzy and stochastic approximations. It presents here univariate, fractional and multivariate approximations. Iterated sequential multi-layer approximations are also studied. The functions under approximation and neural networks are Banach space valued.
Inequalities appear in various fields of natural science and engineering. Classical inequalities are still being improved and/or generalized by many researchers. That is, inequalities have been actively studied by mathematicians. In this book, we selected the papers that were published as the Special Issue ‘’Inequalities’’ in the journal Mathematics (MDPI publisher). They were ordered by similar topics for readers’ convenience and to give new and interesting results in mathematical inequalities, such as the improvements in famous inequalities, the results of Frame theory, the coefficient inequalities of functions, and the kind of convex functions used for Hermite–Hadamard inequalities. The editor believes that the contents of this book will be useful to study the latest results for researchers of this field.