Download Free Constructing Fixed Points And Economic Equilibria Book in PDF and EPUB Free Download. You can read online Constructing Fixed Points And Economic Equilibria and write the review.

1. Introduction. 1.1. Mathematics is language. 1.2. Notes on some mathematical tools in this book. 1.3. Basic mathematical concepts and definitions -- 2. Fixed-point theorems. 2.1. Classical results and basic extensions. 2.2. Convexity and duality for general spaces. 2.3. Extension of classical results to general spaces -- 3. Nash equilibrium and abstract economy. 3.1. Multi-agent product settings for games. 3.2. Nash equilibrium. 3.3. Abstract economy -- 4. Gale-Nikaido-Debreu's theorem. 4.1. Gale-Nikaido-Debreu's theorem. 4.2. Market equilibria in general vector spaces. 4.3. Demand-supply coincidence in general spaces -- 5. General economic equilibrium. 5.1. General preferences and basic existence theorems. 5.2. Pareto optimal allocations. 5.3. Existence of general equilibrium -- 6. The C̮ech type homology theory and fixed points. 6.1. Basic concepts in algebraic topology. 6.2. Vietoris-Begle mapping and local connectedness. 6.3. Nikaido's analogue of Sperner's lemma. 6.4. Eilenberg-Montgomery's theorem -- 7. Convex structure and fixed-point index. 7.1. Lefschetz's fixed-point theorem and its extensions. 7.2. Cohomology theory for general spaces. 7.3. Dual-system structure and differentiability. 7.4. Linear Approximation for Isolated Fixed Points. 7.5. Indices for compact set of fixed points -- 8. Applications to related topics. 8.1. KKM, KKMS, and core existence. 8.2. Eaves' theorem. 8.3. Fan-Browder's coincidence theorem. 8.4. L-majorized mappings. 8.5. Variational inequality problem. 8.6. Equilibrium with cooperative concepts. 8.7. System of inequalities and affine transformations -- 9. Mathematics and social science. 9.1. Basic concepts in axiomatic set theory. 9.2. Individuals and rationality. 9.3. Society and values -- 10. Concluding discussions. 10.1. Fixed points and economic equilibria. 10.2. Rationality and fixed-point views of the world
Computing Equilibria and Fixed Points is devoted to the computation of equilibria, fixed points and stationary points. This volume is written with three goals in mind: (i) To give a comprehensive introduction to fixed point methods and to the definition and construction of Gröbner bases; (ii) To discuss several interesting applications of these methods in the fields of general equilibrium theory, game theory, mathematical programming, algebra and symbolic computation; (iii) To introduce several advanced fixed point and stationary point theorems. These methods and topics should be of interest not only to economists and game theorists concerned with the computation and existence of equilibrium outcomes in economic models and cooperative and non-cooperative games, but also to applied mathematicians, computer scientists and engineers dealing with models of highly nonlinear systems of equations (or polynomial equations).
This book develops the central aspect of fixed point theory – the topological fixed point index – to maximal generality, emphasizing correspondences and other aspects of the theory that are of special interest to economics. Numerous topological consequences are presented, along with important implications for dynamical systems. The book assumes the reader has no mathematical knowledge beyond that which is familiar to all theoretical economists. In addition to making the material available to a broad audience, avoiding algebraic topology results in more geometric and intuitive proofs. Graduate students and researchers in economics, and related fields in mathematics and computer science, will benefit from this book, both as a useful reference and as a well-written rigorous exposition of foundational mathematics. Numerous problems sketch key results from a wide variety of topics in theoretical economics, making the book an outstanding text for advanced graduate courses in economics and related disciplines.
Gives a complete overview of modern constructive mathematics and its applications through surveys by leading experts.
This book discusses mathematical models for various applications in economics, with a focus on non-linear dynamics. Based on the author’s over 50 years of active work in the field, the book has been inspired by models from the period between 1920 and 1950. Following a brief introduction to economics for mathematicians and other modelers, it assembles a repository of useful specific functions for global dynamic modeling. Furthermore, twelve “research stubs” – outlined research agendas that have not yet been fully worked on – are suggested for further study and could even be expanded to entire research projects. The book is a valuable resource, particularly for young scientists who are skilled in mathematical and computational techniques and are looking for applications in economics.
Progress in the theory of economic equilibria and in game theory has proceeded hand in hand with that of the mathematical tools used in the field, namely nonlinear analysis and, in particular, convex analysis. Jean-Pierre Aubin, one of the leading specialists in nonlinear analysis and its application to economics, has written a rigorous and concise - yet still elementary and self-contained - textbook providing the mathematical tools needed to study optima and equilibria, as solutions to problems, arising in economics, management sciences, operations research, cooperative and non-cooperative games, fuzzy games etc. It begins with the foundations of optimization theory, and mathematical programming, and in particular convex and nonsmooth analysis. Nonlinear analysis is then presented, first game-theoretically, then in the framework of set valued analysis. These results are then applied to the main classes of economic equilibria. The book contains numerous exercises and problems: the latter allow the reader to venture into areas of nonlinear analysis that lie beyond the scope of the book and of most graduate courses.
This book reports the authors' research on one of the most sophisticated general equilibrium models designed for tax policy analysis. Significantly disaggregated and incorporating the complete array of federal, state, and local taxes, the model represents the U.S. economy and tax system in a large computer package. The authors consider modifications of the tax system, including those being raised in current policy debates, such as consumption-based taxes and integration of the corporate and personal income tax systems. A counterfactual economy associated with each of these alternatives is generated, and the possible outcomes are compared.
Computable Foundations for Economics is a unified collection of essays, some of which are published here for the first time and all of which have been updated for this book, on an approach to economic theory from the point of view of algorithmic mathematics. By algorithmic mathematics the author means computability theory and constructive mathematics. This is in contrast to orthodox mathematical economics and game theory, which are formalised with the mathematics of real analysis, underpinned by what is called the ZFC formalism, i.e., set theory with the axiom of choice. This reliance on ordinary real analysis and the ZFC system makes economic theory in its current mathematical mode completely non-algorithmic, which means it is numerically meaningless. The book provides a systematic attempt to dissect and expose the non-algorithmic content of orthodox mathematical economics and game theory and suggests a reformalization on the basis of a strictly rigorous algorithmic mathematics. This removes the current schizophrenia in mathematical economics and game theory, where theory is entirely divorced from algorithmic applicability – for experimental and computational exercises. The chapters demonstrate the uncomputability and non-constructivity of core areas of general equilibrium theory, game theory and recursive macroeconomics. The book also provides a fresh look at the kind of behavioural economics that lies behind Herbert Simon’s work, and resurrects a role for the noble classical traditions of induction and verification, viewed and formalised, now, algorithmically. It will therefore be of particular interest to postgraduate students and researchers in algorithmic economics, game theory and classical behavioural economics.
Japanese economists began publishing scientific papers in renowned journals including Econometrica in the 1950s and had made their significant contributions to the sophistication of general equilibrium analysis by intensive use of a variety of mathematical instruments. They had contributed significantly to the transformation of neoclassical economics. This book examines how it became possible for Japanese economists to do so by shedding light on the "professional" discussion of the international gold standard and parity policies in the early twentieth century, the acceptance of "mathematical economics" in the following period, the impact of establishment of the Econometric Society (1930), and the swift distribution of theory-oriented economics journals since 1930. This book also includes topics on the historical research of the Japanese foundations of modern economics, the transformation of the economics of Keynes into Keynesian economics, Japanese developments in econometrics, and Martin Bronfenbrenner's visit to Japan in the post-WWII period. This book provides insight into the economic research done by Japanese scholars in the international context. It traces how, during the period 1900-1960, economics was harmonized with economics and a standard economics was re-shaped on the basis of mathematics thanks to economists' appetite for rigor and will help to contribute to existing literature.