Download Free Constant Mean Curvature Immersions Of Enneper Type Book in PDF and EPUB Free Download. You can read online Constant Mean Curvature Immersions Of Enneper Type and write the review.

This memoir is devoted to the case of constant mean curvature surfaces immersed in [bold]R3. We reduce this geometrical problem to finding certain integrable solutions to the Gauss equation. Many new and interesting examples are presented, including immersed cylinders in [bold]R3 with embedded Delaunay ends and [italic]n-lobes in the middle, and one-parameter families of immersed constant mean curvature tori in [bold]R3. We examine minimal surfaces in hyperbolic three-space, which is in some ways the most complicated case.
Mathematical Visualization is a young new discipline. It offers efficient visualization tools to the classical subjects of mathematics, and applies mathematical techniques to problems in computer graphics and scientific visualization. Originally, it started in the interdisciplinary area of differential geometry, numerical mathematics, and computer graphics. In recent years, the methods developed have found important applications. The current volume is the quintessence of an international workshop in September 1997 in Berlin, focusing on recent developments in this emerging area. Experts present selected research work on new algorithms for visualization problems, describe the application and experiments in geometry, and develop new numerical or computer graphical techniques.
We study Brakke's motion of varifolds by mean curvature in the special case that the initial surface is an integral cycle, giving a new existence proof by mean of elliptic regularization. Under a uniqueness hypothesis, we obtain a weakly continuous family of currents solving Brakke's motion. These currents remain within the corresponding level-set motion by mean curvature, as defined by Evans-Spruck and Chen-Giga-Goto. Now let [italic capital]T0 be the reduced boundary of a bounded set of finite perimeter in [italic capital]R[superscript italic]n. If the level-set motion of the support of [italic capital]T0 does not develop positive Lebesgue measure, then there corresponds a unique integral [italic]n-current [italic capital]T, [partial derivative/boundary/degree of a polynomial symbol][italic capital]T = [italic capital]T0, whose time-slices form a unit density Brakke motion. Using Brakke's regularity theorem, spt [italic capital]T is smooth [script capital]H[superscript italic]n-almost everywhere. In consequence, almost every level-set of the level-set flow is smooth [script capital]H[superscript italic]n-almost everywhere in space-time.
The first of three parts comprising Volume 54, the proceedings of the Summer Research Institute on Differential Geometry, held at the University of California, Los Angeles, July 1990 (ISBN for the set is 0-8218-1493-1). Part 1 begins with a problem list by S.T. Yau, successor to his 1980 list ( Sem
Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently, as surfaces of zero mean curvature. The final definition of a minimal surface is that of a nonconstant harmonic mapping X: \Omega\to\R^3 which is conformally parametrized on \Omega\subset\R^2 and may have branch points. Thereafter the classical theory of minimal surfaces is surveyed, comprising many examples, a treatment of Björling ́s initial value problem, reflection principles, a formula of the second variation of area, the theorems of Bernstein, Heinz, Osserman, and Fujimoto. The second part of this volume begins with a survey of Plateau ́s problem and of some of its modifications. One of the main features is a new, completely elementary proof of the fact that area A and Dirichlet integral D have the same infimum in the class C(G) of admissible surfaces spanning a prescribed contour G. This leads to a new, simplified solution of the simultaneous problem of minimizing A and D in C(G), as well as to new proofs of the mapping theorems of Riemann and Korn-Lichtenstein, and to a new solution of the simultaneous Douglas problem for A and D where G consists of several closed components. Then basic facts of stable minimal surfaces are derived; this is done in the context of stable H-surfaces (i.e. of stable surfaces of prescribed mean curvature H), especially of cmc-surfaces (H = const), and leads to curvature estimates for stable, immersed cmc-surfaces and to Nitsche ́s uniqueness theorem and Tomi ́s finiteness result. In addition, a theory of unstable solutions of Plateau ́s problems is developed which is based on Courant ́s mountain pass lemma. Furthermore, Dirichlet ́s problem for nonparametric H-surfaces is solved, using the solution of Plateau ́s problem for H-surfaces and the pertinent estimates.
Regularity of Minimal Surfaces begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is that, for principal reasons, it is impossible to derive a priori estimates. Therefore regularity proofs for non-minimizers have to be based on indirect reasoning using monotonicity formulas. This is followed by a long chapter discussing geometric properties of minimal and H-surfaces such as enclosure theorems and isoperimetric inequalities, leading to the discussion of obstacle problems and of Plateau ́s problem for H-surfaces in a Riemannian manifold. A natural generalization of the isoperimetric problem is the so-called thread problem, dealing with minimal surfaces whose boundary consists of a fixed arc of given length. Existence and regularity of solutions are discussed. The final chapter on branch points presents a new approach to the theorem that area minimizing solutions of Plateau ́s problem have no interior branch points.
This book constitutes the proceedings of the International Conference on Integrable Systems in memory of J.-L. Verdier. It was held on July 1-5, 1991 at the Centre International de Recherches Mathematiques (C.I.R.M.) at Luminy, near Marseille (France). This collection of articles, covering many aspects of the theory of integrable Hamiltonian systems, both finite and infinite-dimensional, with an emphasis on the algebro-geometric meth ods, is published here as a tribute to Verdier who had planned this confer ence before his death in 1989 and whose active involvement with this topic brought integrable systems to the fore as a subject for active research in France. The death of Verdier and his wife on August 25, 1989, in a car accident near their country house, was a shock to all of us who were acquainted with them, and was very deeply felt in the mathematics community. We knew of no better way to honor Verdier's memory than to proceed with both the School on Integrable Systems at the C.I.M.P.A. (Centre International de Mathematiques Pures et Appliquees in Nice), and the Conference on the same theme that was to follow it, as he himself had planned them.
Many properties of minimal surfaces are of a global nature, and this is already true for the results treated in the first two volumes of the treatise. Part I of the present book can be viewed as an extension of these results. For instance, the first two chapters deal with existence, regularity and uniqueness theorems for minimal surfaces with partially free boundaries. Here one of the main features is the possibility of "edge-crawling" along free parts of the boundary. The third chapter deals with a priori estimates for minimal surfaces in higher dimensions and for minimizers of singular integrals related to the area functional. In particular, far reaching Bernstein theorems are derived. The second part of the book contains what one might justly call a "global theory of minimal surfaces" as envisioned by Smale. First, the Douglas problem is treated anew by using Teichmüller theory. Secondly, various index theorems for minimal theorems are derived, and their consequences for the space of solutions to Plateau ́s problem are discussed. Finally, a topological approach to minimal surfaces via Fredholm vector fields in the spirit of Smale is presented.
In this work, Han and Sawyer extend Littlewood-Paley theory, Besov spaces, and Triebel-Lizorkin spaces to the general setting of a space of homogeneous type. For this purpose, they establish a suitable analogue of the Calder 'on reproducing formula and use it to extend classical results on atomic decomposition, interpolation, and T1 and Tb theorems. Some new results in the classical setting are also obtained: atomic decompositions with vanishing b-moment, and Littlewood-Paley characterizations of Besov and Triebel-Lizorkin spaces with only half the usual smoothness and cancellation conditions on the approximate identity.
This work completely characterizes the behaviour of Cesaro means of any order of the Jacobi polynomials. In particular, pointwise estimates are derived for the Cesaro mean kernel. Complete answers are given for the convergence almost everywhere of partial sums of Cesaro means of functions belonging to the critical L ]p spaces. This characterization is deduced from weak type estimates for the maximal partial sum operator. The methods used are fairly general and should apply to other series of special functions.