Download Free Conservation Of Plant Genes Book in PDF and EPUB Free Download. You can read online Conservation Of Plant Genes and write the review.

The recent development of ideas on biodiversity conservation was already being considered almost three-quarters of a century ago for crop plants and the wild species related to them, by the Russian geneticist N.!. Vavilov. He was undoubtedly the first scientist to understand the impor tance for humankind of conserving for utilization the genetic diversity of our ancient crop plants and their wild relatives from their centres of diversity. His collections showed various traits of adaptation to environ mental extremes and biotypes of crop diseases and pests which were unknown to most plant breeders in the first quarter of the twentieth cen tury. Later, in the 1940s-1960s scientists began to realize that the pool of genetic diversity known to Vavilov and his colleagues was beginning to disappear. Through the replacement of the old, primitive and highly diverse land races by uniform modem varieties created by plant breed ers, the crop gene pool was being eroded. The genetic diversity of wild species was equally being threatened by human activities: over-exploita tion, habitat destruction or fragmentation, competition resulting from the introduction of alien species or varieties, changes and intensification of land use, environmental pollution and possible climate change.
A practical guide that covers both in situ and ex situ techniques for plant diversity conservation The conservation and sustainable use of plant genetic resources is of increasing importance globally. Plant Conservation Genetics addresses this issue by providing an extensive overview of this emerging area of science, exploring various pr
Genes in the Field: Conserving Plant Diversity on Farms is a comprehensive collection of papers focusing on agricultural conservation and diversity issues throughout the world. Recently, regional and local farm seed variety has been reduced because of increased population, agricultural science and technology and the integration of the world's many diverse cultures. Because of this, diversity on individual farms across wide regions is threatened by modern crop varieties that have been bred for broad adaptation, resistance to disease, and other risk factors such as their ability to better use water, fertilizer, and higher yields. The concern of the farmers to maintain production levels and income often seems incompatible with those whose focus is on the maintenance of viable and sustainable ecosystems and maintaining genetic diversity. Exploring and understanding these different concerns is an essential starting point for answering some of the key questions about the implementation of "on farm" conservation and the role of local cultivators in sustainable development.
Nearly 700 species of plants may become extinct by the year 2000. Faced with this overwhelming prospect, plant conservationists must take advantage of every technique available. This unique work summarizes our current knowledge of the genetics and population biology of rare plants, and integrates it with practical conservation recommendations. It features discussions on the distribution and significance of genetic variation, management and evaluation of rare plant germplasm, and conservation strategies for genetic diversity. Case studies focusing on specific problems offer important insights for today's challenges in rare plant conservation.
Genetic erosion is the loss of genetic diversity within a species. It can happen very quickly, due to catastrophic events, or changes in land use leading to habitat loss. But it can also occur more gradually and remain unnoticed for a long time. One of the main causes of genetic erosion is the replacement of local varieties by modern varieties. Other causes include environmental degradation, urbanization, and land clearing through deforestation and brush fires. In order to conserve biodiversity in plants, it is important to targets three independent levels that include ecosystems, species and genes. Genetic diversity is important to a species’ fitness, long-term viability, and ability to adapt to changing environmental conditions. Chapters in this book are written by leading geneticists, molecular biologists and other specialists on relevant topics on genetic erosion and conservation genetic diversity in plants. This divisible set of two volumes deals with a broad spectrum of topics on genetic erosion, and approaches to biodiversity conservation in crop plants and trees. Volume 1 deals with indicators and prevention of genetic erosion, while volume 2 covers genetic diversity and erosion in a number of plants species. These two volumes will also be useful to botanists, biotechnologists, environmentalists, policy makers, conservationists, and NGOs working to manage genetic erosion and biodiversity.
Over the past decade the importance of natural resources for sustainable agricultural development has been increasingly discussed at international forums and conferences. Aside from the sustainable management of soil, water, and air, it now seems to be accepted that the sustainable management of genetic resources is one of the four indispensable preconditions for a sustainable agriculture. The discussion on conservation of plant genetic resources for food and agriculture (PGRFA), however, has to reflect the costs of conservation as well. These have not yet been discussed intensively. The study analyzes the conservation costs of plant genetic resources; it also assesses the effectiveness of conservation and the efficiency of the different conservation instruments. It is based on extensive surveys in relevant countries. Following the detailed cost and impact analysis, the results show that the effectiveness of conservation strategies may be increased.
Faced with widespread and devastating loss of biodiversity in wild habitats, scientists have developed innovative strategies for studying and protecting targeted plant and animal species in "off-site" facilities such as botanic gardens and zoos. Such ex situ work is an increasingly important component of conservation and restoration efforts. Ex Situ Plant Conservation, edited by Edward O. Guerrant Jr., Kayri Havens, and Mike Maunder, is the first book to address integrated plant conservation strategies and to examine the scientific, technical, and strategic bases of the ex situ approach. The book examines where and how ex situ investment can best support in situ conservation. Ex Situ Plant Conservation outlines the role, value, and limits of ex situ conservation as well as updating best management practices for the field, and is an invaluable resource for plant conservation practitioners at botanic gardens, zoos, and other conservation organizations; students and faculty in conservation biology and related fields; managers of protected areas and other public and private lands; and policymakers and members of the international community concerned with species conservation.
This anchor volume to the series Managing Global Genetic Resources examines the structure that underlies efforts to preserve genetic material, including the worldwide network of genetic collections; the role of biotechnology; and a host of issues that surround management and use. Among the topics explored are in situ versus ex situ conservation, management of very large collections of genetic material, problems of quarantine, the controversy over ownership or copyright of genetic material, and more.
Plant diversity sustains all animal life, and the genetic diversity within plants underpins global food security. This text provides a practical and theoretical introduction to the strategies and actions to adopt for conserving plant genetic variation, as well as explaining how humans can exploit this diversity for sustainable development. Notably readable, it initially offers current knowledge on the characterization and evaluation of plant genetic resources. The authors then discuss strategies from in situ and ex situ conservation to crop breeding, exploring how these can be used to improve food security in the face of increasing agrobiodiversity loss, human population growth and climate change. Each chapter draws on examples from the literature or the authors' research and includes further reading references. Containing other useful features such as a glossary, it is invaluable for professionals and undergraduate and graduate students in plant sciences, ecology, conservation, genetics and natural resource management.
Genetic erosion is the loss of genetic diversity within a species. It can happen very quickly, due to catastrophic events, or changes in land use leading to habitat loss. But it can also occur more gradually and remain unnoticed for a long time. One of the main causes of genetic erosion is the replacement of local varieties by modern varieties. Other causes include environmental degradation, urbanization, and land clearing through deforestation and brush fires. In order to conserve biodiversity in plants, it is important to targets three independent levels that include ecosystems, species and genes. Genetic diversity is important to a species’ fitness, long-term viability, and ability to adapt to changing environmental conditions. Chapters in this book are written by leading geneticists, molecular biologists and other specialists on relevant topics on genetic erosion and conservation genetic diversity in plants. This divisible set of two volumes deals with a broad spectrum of topics on genetic erosion, and approaches to biodiversity conservation in crop plants and trees. Volume 1 deals with indicators and prevention of genetic erosion, while volume 2 covers genetic diversity and erosion in a number of plants species. These two volumes will also be useful to botanists, biotechnologists, environmentalists, policy makers, conservationists, and NGOs working to manage genetic erosion and biodiversity.