Download Free Consequences Of Nuclear And Chemical Disasters Book in PDF and EPUB Free Download. You can read online Consequences Of Nuclear And Chemical Disasters and write the review.

Underground facilities are used extensively by many nations to conceal and protect strategic military functions and weapons' stockpiles. Because of their depth and hardened status, however, many of these strategic hard and deeply buried targets could only be put at risk by conventional or nuclear earth penetrating weapons (EPW). Recently, an engineering feasibility study, the robust nuclear earth penetrator program, was started by DOE and DOD to determine if a more effective EPW could be designed using major components of existing nuclear weapons. This activity has created some controversy about, among other things, the level of collateral damage that would ensue if such a weapon were used. To help clarify this issue, the Congress, in P.L. 107-314, directed the Secretary of Defense to request from the NRC a study of the anticipated health and environmental effects of nuclear earth-penetrators and other weapons and the effect of both conventional and nuclear weapons against the storage of biological and chemical weapons. This report provides the results of those analyses. Based on detailed numerical calculations, the report presents a series of findings comparing the effectiveness and expected collateral damage of nuclear EPW and surface nuclear weapons under a variety of conditions.
To achieve successful solutions to the problems resulting from local, distant and global radioactive fallout after nuclear explosions and accidents and to achieve successful retrospective analyses of the radiation conditions from recent observations, certain information is needed: the distribution of the exposure dose rate in the atmosphere and in a country; the distribution of radionuclides in natural environments and the nuclide composition of the radioactive fallout; the features of formation of the aerosol particle-carriers of the radioactivity and of the nuclide distribution of the particles of different sizes formed under different conditions; the processes involved in the migration of radioactive products in different zones and environments; the external and internal effects of nuclear radiation on human beings.This monograph is devoted to a number of these problems, namely, to studies of the radioactive fallout composition, the formation of the aerosol particles that transport the radioactive products and to the analysis of the external radiation doses resulting from nuclear explosions and/or accidents. Problems of restoration and rehabilitation of contaminated land areas are also touched upon in the monograph. To solve such problems one requires knowledge of the mobility of radionuclides, an understanding of their uptake by plants, their transportation within the food chain and finally their uptake by animal and/or human organisms.The results of many years of study of radioactive fallout from atmospheric and underground nuclear explosions and accidents are summarized in this book. It is intended for various specialists - geophysicists, ecologists, health experts and inspectors, as well as those who are concerned with radioactive contamination of natural environments.
From chemical leaks and oil spills to toxic pollution and nuclear accidents, environmental disasters are devastating for the people and animals in their wake. Such disasters can destroy the land and wipe out wildlife. They can contaminate buildings and even demolish entire communities. Scientists are still studying the long-term impact of environmental disasters and looking for new ways to mitigate them. With dramatic images and firsthand survivor stories—plus the latest facts and figures—this book shows you environmental disasters up close.
The explosion on 26 April 1986 at the Chernobyl nuclear power plant and the consequent reactor fire resulted in an unprecedented release of radioactive material from a nuclear reactor and adverse consequences for the public and the environment. Although the accident occurred nearly two decades ago, controversy still surrounds the real impact of the disaster. Therefore the IAEA, in cooperation with other UN bodies, the World Bank, as well as the competent authorities of Belarus, the Russian Federation and Ukraine, established the Chernobyl Forum in 2003. The mission of the Forum was to generate 'authoritative consensual statements' on the environmental consequences and health effects attributable to radiation exposure arising from the accident as well as to provide advice on environmental remediation and special health care programmes, and to suggest areas in which further research is required. This report presents the findings and recommendations of the Chernobyl Forum concerning the environmental effects of the Chernobyl accident.
Risk assessment has come to assume acute importance in the former Soviet Union since money is so scarce, yet the needs for cleanup are so huge. Other factors contribute to this situation, too: New leaders are still emerging, and governmental structures are still evolving. This creates a particular difficulty for environmentalists who attempt to become involved in the risk assessment process. New information continues to surface on the fallout from Chernobyl and its consequences for human health. Scientists are still debating the effects of low doses of radiation delivered over a long period of time. This type of contamination is especially prevalent in the Russian North, for example, as a result of the dumping of nuclear submarine reactors into the Kara and Barents Seas. This book examines the complexities of risk assessment in the FSU at this unique time in history.
The presidential
The Science of Responding to a Nuclear Reactor Accident summarizes the presentations and discussions of the May 2014 Gilbert W. Beebe Symposium titled "The Science and Response to a Nuclear Reactor Accident". The symposium, dedicated in honor of the distinguished National Cancer Institute radiation epidemiologist who died in 2003, was co-hosted by the Nuclear and Radiation Studies Board of the National Academy of Sciences and the National Cancer Institute. The symposium topic was prompted by the March 2011 accident at the Fukushima Daiichi nuclear power plant that was initiated by the 9.0-magnitude earthquake and tsunami off the northeast coast of Japan. This was the fourth major nuclear accident that has occurred since the beginning of the nuclear age some 60 years ago. The 1957 Windscale accident in the United Kingdom caused by a fire in the reactor, the 1979 Three Mile Island accident in the United States caused by mechanical and human errors, and the 1986 Chernobyl accident in the former Soviet Union caused by a series of human errors during the conduct of a reactor experiment are the other three major accidents. The rarity of nuclear accidents and the limited amount of existing experiences that have been assembled over the decades heightens the importance of learning from the past. This year's symposium promoted discussions among federal, state, academic, research institute, and news media representatives on current scientific knowledge and response plans for nuclear reactor accidents. The Beebe symposium explored how experiences from past nuclear plant accidents can be used to mitigate the consequences of future accidents, if they occur. The Science of Responding to a Nuclear Reactor Accident addresses off-site emergency response and long-term management of the accident consequences; estimating radiation exposures of affected populations; health effects and population monitoring; other radiological consequences; and communication among plant officials, government officials, and the public and the role of the media.
The March 11, 2011, Great East Japan Earthquake and tsunami sparked a humanitarian disaster in northeastern Japan. They were responsible for more than 15,900 deaths and 2,600 missing persons as well as physical infrastructure damages exceeding $200 billion. The earthquake and tsunami also initiated a severe nuclear accident at the Fukushima Daiichi Nuclear Power Station. Three of the six reactors at the plant sustained severe core damage and released hydrogen and radioactive materials. Explosion of the released hydrogen damaged three reactor buildings and impeded onsite emergency response efforts. The accident prompted widespread evacuations of local populations, large economic losses, and the eventual shutdown of all nuclear power plants in Japan. "Lessons Learned from the Fukushima Nuclear Accident for Improving Safety and Security of U.S. Nuclear Plants" is a study of the Fukushima Daiichi accident. This report examines the causes of the crisis, the performance of safety systems at the plant, and the responses of its operators following the earthquake and tsunami. The report then considers the lessons that can be learned and their implications for U.S. safety and storage of spent nuclear fuel and high-level waste, commercial nuclear reactor safety and security regulations, and design improvements. "Lessons Learned" makes recommendations to improve plant systems, resources, and operator training to enable effective ad hoc responses to severe accidents. This report's recommendations to incorporate modern risk concepts into safety regulations and improve the nuclear safety culture will help the industry prepare for events that could challenge the design of plant structures and lead to a loss of critical safety functions. In providing a broad-scope, high-level examination of the accident, "Lessons Learned" is meant to complement earlier evaluations by industry and regulators. This in-depth review will be an essential resource for the nuclear power industry, policy makers, and anyone interested in the state of U.S. preparedness and response in the face of crisis situations.
This book discusses nuclear events that may become imminent threats to the fabric of our society, and elucidates strategies for preventing these threats or mitigating their adverse effects. It addresses multidisciplinary aspects of various nuclear emergencies, including nuclear accidents, terror attacks involving nuclear materials, illicit trafficking of nuclear materials, and problems related to nuclear forensics and strikes with nuclear weapons/warheads. Very often, nuclear emergencies are only discussed within certain, specific communities. However, this volume brings together experts from various fields to provide a more holistic approach to the problem. Physical, chemical, environmental, social, and medical scientists, together with representatives from the media and authorities, present their views on and strategies for events that cause fear and anxiety among the public – an aspect that can be even more threatening than the direct health effects. The book offers a valuable guide for nuclear scientists, such as radioecologists, health physicists, radioanalytical scientists and nuclear engineers, as well as decision-makers and national/international authorities.