Download Free Connectivity In Motion Book in PDF and EPUB Free Download. You can read online Connectivity In Motion and write the review.

This original collection brings islands to the fore in a growing body of scholarship on the Indian Ocean, examining them as hubs or points of convergence and divergence in a world of maritime movements and exchanges. Straddling history and anthropology and grounded in the framework of connectivity, the book tackles central themes such as smallness, translocality, and “the island factor.” It moves to the farthest reaches of the region, with a rich variety of case studies on the Swahili-Comorian world, the Maldives, Indonesia, and more. With remarkable breadth and cohesion, these essays capture the circulations of people, goods, rituals, sociocultural practices, and ideas that constitute the Indian Ocean world. Together, they take up “islandness” as an explicit empirical and methodological issue as few have done before.
In the last few years, advances in human structural and functional neuroimaging (fMRI, PET, EEG/MEG) have resulted in an explosion of studies investigating the anatomical and functional connectivity between different regions of the brain. More and more studies have employed resting and task-related connectivity analyses to assess functional interactions, and diffusion-weighted tractography to study white matter organization. Many of these studies have addressed normal human function, but recently, a number of investigators have turned their attention to examining brain disorders. The study of brain disorders is a complex endeavor; not only does it require understanding the normal brain, and the regions involved in a particular function, but also it needs a deeper understanding of brain networks and their dynamics. This Research Topic will provide the scientific community with an overview of how to apply connectivity methods to study brain disease, and with perspectives on what are the strength and limitations of each modality. For this Research Topic, we solicit both reviews and original research articles on the use of brain connectivity analysis, with non-human or human models, to explore neurological, psychiatric, developmental and neurodegenerative disorders from a system perspective. Connectivity studies that have focused on one or more of the following will be of particular interest: (1) detection of abnormal functional/structural connectivity; (2) neural plasticity, assessed by changes in connectivity, in patients with brain disorders; (3) assessment of therapy using connectivity measures; (4) relation of connectivity changes to behavioral changes.
In this collection of carefully selected papers connectivity is looked at from the vantage points of language contact, language change, language acquisition, multilingual communication and related domains based on various European and Non-European languages. From typological and multilingual perspectives the focus of investigation is on the grammatical architecture of a number of linguistic devices that interconnect units of text and discourse. The volume is organized along central concepts: A general section deals with connectivity in language change and language acquisition, subdivisions are devoted to pronouns, topics and subjects, the role of finiteness in text and discourse, coordination and subordination and particles, adverbials and constructions. The editors' preface introduces connectivity as an object of linguistic research.
The physical processes which initiate and maintain motion have been a major concern of serious investigation throughout the evolution of scientific thought. As early as the fifth century B. C. questions regarding motion were presented as touchstones for the most fundamental concepts about existence. Such wide ranging philosophical issues are beyond the scope of this book, however, consider the paradox of the flying arrow attri buted to Zeno of Elea: An arrow is shot from point A to point B requiring a sequence of time instants to traverse the distance. Now, for any time instant, T, of the sequence the arrow is at a position, Pi' and at Ti+! the i arrow is at Pi+i> with Pi ::I-P+• Clearly, each Ti must be a singular time i 1 unit at which the arrow is at rest at Pi because if the arrow were moving during Ti there would be a further sequence, Til' of time instants required for the arrow to traverse the smaller distance. Now, regardless of the level to which this recursive argument is applied, one is left with the flight of the arrow comprising a sequence of positions at which the arrow is at rest. The original intent of presenting this paradox has been interpreted to be as an argument against the possibility of individuated objects moving in space.
The two volume set LNCS 4984 and LNCS 4985 constitutes the thoroughly refereed post-conference proceedings of the 14th International Conference on Neural Information Processing, ICONIP 2007, held in Kitakyushu, Japan, in November 2007, jointly with BRAINIT 2007, the 4th International Conference on Brain-Inspired Information Technology. The 228 revised full papers presented were carefully reviewed and selected from numerous ordinary paper submissions and 15 special organized sessions. The 116 papers of the first volume are organized in topical sections on computational neuroscience, learning and memory, neural network models, supervised/unsupervised/reinforcement learning, statistical learning algorithms, optimization algorithms, novel algorithms, as well as motor control and vision. The second volume contains 112 contributions related to statistical and pattern recognition algorithms, neuromorphic hardware and implementations, robotics, data mining and knowledge discovery, real world applications, cognitive and hybrid intelligent systems, bioinformatics, neuroinformatics, brain-conputer interfaces, and novel approaches.
Networked thermostats, fitness monitors, and door locks show that the Internet of Things can (and will) enable new ways for people to interact with the world around them. But designing connected products for consumers brings new challenges beyond conventional software UI and interaction design. This book provides experienced UX designers and technologists with a clear and practical roadmap for approaching consumer product strategy and design in this novel market. By drawing on the best of current design practice and academic research, Designing Connected Products delivers sound advice for working with cross-device interactions and the complex ecosystems inherent in IoT technology.
An innovative collection of essays that foregrounds specific cargoes as a means to understand connectivity and mobility across the Indian Ocean world. Scholars have long appreciated the centrality of trade and commerce in understanding the connectivity and mobility that underpin human experience in the Indian Ocean region. But studies of merchant and commercial activities have paid little attention to the role that cargoes have played in connecting the disparate parts of this vast oceanic world. Drawing from the work of anthropologists, geographers, and historians, Cargoes in Motion tells the story of how material objects have informed and continue to shape processes of exchange across the Indian Ocean. By following selected cargoes through both space and time, this book makes an important and innovative contribution to Indian Ocean studies. The multidisciplinary approach deepens our understanding of the nature and dynamics of the Indian Ocean world by showing how transoceanic connectivity has been driven not only by economic, social, cultural, and political factors but also by the materiality of the objects themselves. Essays by: Edward A. Alpers Fahad Ahmad Bishara Eva-Maria Knoll Karl-Heinz Kohl Lisa Jenny Krieg Pedro Machado Rupert Neuhöfer Mareike Pampus Hannah Pilgrim Burkhard Schnepel Hanne Schönig Tansen Sen Steven Serels Julia Verne Kunbing Xiao
The brain's ability to process information crucially relies on connectivity. Understanding how the brain processes complex information and how such abilities are disrupted in individuals with neuropsychological disorders will require an improved understanding of brain connectivity. Autism is an intriguingly complex neurodevelopmental disorder with multidimensional symptoms and cognitive characteristics. A biological origin for autism spectrum disorders (ASD) had been proposed even in the earliest published accounts (Kanner, 1943; Asperger, 1944). Despite decades of research, a focal neurobiological marker for autism has been elusive. Nevertheless, disruptions in interregional and functional and anatomical connectivity have been a hallmark of neural functioning in ASD. Theoretical accounts of connectivity perceive ASD as a cognitive and neurobiological disorder associated with altered functioning of integrative circuitry. Neuroimaging studies have reported disruptions in functional connectivity (synchronization of activated brain areas) during cognitive tasks and during task-free resting states. While these insights are valuable, they do not address the time-lagged causality and directionality of such correlations. Despite the general promise of the connectivity account of ASD, inconsistencies and methodological differences among studies call for more thorough investigations. A comprehensive neurological account of ASD should incorporate functional, effective, and anatomical connectivity measures and test the diagnostic utility of such measures. In addition, questions pertaining to how cognitive and behavioral intervention can target connection abnormalities in ASD should be addressed. This research topic of the Frontiers in Human Neuroscience addresses “Brain Connectivity in Autism” primarily from cognitive neuroscience and neuroimaging perspectives.
A comprehensive Introduction to the world of brain and behavior computational models This book provides a broad collection of articles covering different aspects of computational modeling efforts in psychology and neuroscience. Specifically, it discusses models that span different brain regions (hippocampus, amygdala, basal ganglia, visual cortex), different species (humans, rats, fruit flies), and different modeling methods (neural network, Bayesian, reinforcement learning, data fitting, and Hodgkin-Huxley models, among others). Computational Models of Brain and Behavior is divided into four sections: (a) Models of brain disorders; (b) Neural models of behavioral processes; (c) Models of neural processes, brain regions and neurotransmitters, and (d) Neural modeling approaches. It provides in-depth coverage of models of psychiatric disorders, including depression, posttraumatic stress disorder (PTSD), schizophrenia, and dyslexia; models of neurological disorders, including Alzheimer’s disease, Parkinson’s disease, and epilepsy; early sensory and perceptual processes; models of olfaction; higher/systems level models and low-level models; Pavlovian and instrumental conditioning; linking information theory to neurobiology; and more. Covers computational approximations to intellectual disability in down syndrome Discusses computational models of pharmacological and immunological treatment in Alzheimer's disease Examines neural circuit models of serotonergic system (from microcircuits to cognition) Educates on information theory, memory, prediction, and timing in associative learning Computational Models of Brain and Behavior is written for advanced undergraduate, Master's and PhD-level students—as well as researchers involved in computational neuroscience modeling research.