Download Free Connections In Classical And Quantum Field Theory Book in PDF and EPUB Free Download. You can read online Connections In Classical And Quantum Field Theory and write the review.

Geometrical notions and methods play an important role in both classical and quantum field theory, and a connection is a deep structure which apparently underlies the gauge-theoretical models in field theory and mechanics. This book is an encyclopaedia of modern geometric methods in theoretical physics. It collects together the basic mathematical facts about various types of connections, and provides a detailed exposition of relevant physical applications. It discusses the modern issues concerning the gauge theories of fundamental fields. The authors have tried to give all the necessary mathematical background, thus making the book self-contained.This book should be useful to graduate students, physicists and mathematicians who are interested in the issue of deep interrelations between theoretical physics and geometry.
Contemporary quantum field theory is mainly developed as quantization of classical fields. Therefore, classical field theory and its BRST extension is the necessary step towards quantum field theory. This book aims to provide a complete mathematical foundation of Lagrangian classical field theory and its BRST extension for the purpose of quantization. Based on the standard geometric formulation of theory of nonlinear differential operators, Lagrangian field theory is treated in a very general setting. Reducible degenerate Lagrangian theories of even and odd fields on an arbitrary smooth manifold are considered. The second Noether theorems generalized to these theories and formulated in the homology terms provide the strict mathematical formulation of BRST extended classical field theory. The most physically relevant field theories OCo gauge theory on principal bundles, gravitation theory on natural bundles, theory of spinor fields and topological field theory OCo are presented in a complete way. This book is designed for theoreticians and mathematical physicists specializing in field theory. The authors have tried throughout to provide the necessary mathematical background, thus making the exposition self-contained.
A modern introduction to quantum field theory for graduates, providing intuitive, physical explanations supported by real-world applications and homework problems.
The first title in a new series, this book explores topics from classical and quantum mechanics and field theory. The material is presented at a level between that of a textbook and research papers making it ideal for graduate students. The book provides an entree into a field that promises to remain exciting and important for years to come.
Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.
This book provides an introduction to how the mathematical tools from quantum field theory can be applied to economics and finance. Providing a range of quantum mathematical techniques for designing financial instruments, it demonstrates how a range of topics have quantum mechanical formulations, from asset pricing to interest rates.
Quantum field theory has been a great success for physics, but it is difficult for mathematicians to learn because it is mathematically incomplete. Folland, who is a mathematician, has spent considerable time digesting the physical theory and sorting out the mathematical issues in it. Fortunately for mathematicians, Folland is a gifted expositor. The purpose of this book is to present the elements of quantum field theory, with the goal of understanding the behavior of elementary particles rather than building formal mathematical structures, in a form that will be comprehensible to mathematicians. Rigorous definitions and arguments are presented as far as they are available, but the text proceeds on a more informal level when necessary, with due care in identifying the difficulties. The book begins with a review of classical physics and quantum mechanics, then proceeds through the construction of free quantum fields to the perturbation-theoretic development of interacting field theory and renormalization theory, with emphasis on quantum electrodynamics. The final two chapters present the functional integral approach and the elements of gauge field theory, including the Salam–Weinberg model of electromagnetic and weak interactions.
Geometrical notions and methods play an important role in both classical and quantum field theory, and a connection is a deep structure which apparently underlies the gauge-theoretical models in field theory and mechanics. This book is an encyclopaedia of modern geometric methods in theoretical physics. It collects together the basic mathematical facts about various types of connections, and provides a detailed exposition of relevant physical applications. It discusses the modern issues concerning the gauge theories of fundamental fields. The authors have tried to give all the necessary mathematical background, thus making the book self-contained.This book should be useful to graduate students, physicists and mathematicians who are interested in the issue of deep interrelations between theoretical physics and geometry.
The only graduate-level textbook on quantum field theory that fully integrates perspectives from high-energy, condensed-matter, and statistical physics Quantum field theory was originally developed to describe quantum electrodynamics and other fundamental problems in high-energy physics, but today has become an invaluable conceptual and mathematical framework for addressing problems across physics, including in condensed-matter and statistical physics. With this expansion of applications has come a new and deeper understanding of quantum field theory—yet this perspective is still rarely reflected in teaching and textbooks on the subject. Developed from a year-long graduate course Eduardo Fradkin has taught for years to students of high-energy, condensed-matter, and statistical physics, this comprehensive textbook provides a fully "multicultural" approach to quantum field theory, covering the full breadth of its applications in one volume. Brings together perspectives from high-energy, condensed-matter, and statistical physics in both the main text and exercises Takes students from basic techniques to the frontiers of physics Pays special attention to the relation between measurements and propagators and the computation of cross sections and response functions Focuses on renormalization and the renormalization group, with an emphasis on fixed points, scale invariance, and their role in quantum field theory and phase transitions Other topics include non-perturbative phenomena, anomalies, and conformal invariance Features numerous examples and extensive problem sets Also serves as an invaluable resource for researchers
This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.