Download Free Connecting Mathematics And Mathematics Education Book in PDF and EPUB Free Download. You can read online Connecting Mathematics And Mathematics Education and write the review.

This open access book features a selection of articles written by Erich Ch. Wittmann between 1984 to 2019, which shows how the “design science conception” has been continuously developed over a number of decades. The articles not only describe this conception in general terms, but also demonstrate various substantial learning environments that serve as typical examples. In terms of teacher education, the book provides clear information on how to combine (well-understood) mathematics and methods courses to benefit of teachers. The role of mathematics in mathematics education is often explicitly and implicitly reduced to the delivery of subject matter that then has to be selected and made palpable for students using methods imported from psychology, sociology, educational research and related disciplines. While these fields have made significant contributions to mathematics education in recent decades, it cannot be ignored that mathematics itself, if well understood, provides essential knowledge for teaching mathematics beyond the pure delivery of subject matter. For this purpose, mathematics has to be conceived of as an organism that is deeply rooted in elementary operations of the human mind, which can be seamlessly developed to higher and higher levels so that the full richness of problems of various degrees of difficulty, and different means of representation, problem-solving strategies, and forms of proof can be used in ways that are appropriate for the respective level. This view of mathematics is essential for designing learning environments and curricula, for conducting empirical studies on truly mathematical processes and also for implementing the findings of mathematics education in teacher education, where it is crucial to take systemic constraints into account.
The word "critical" in the title of this collection has three meanings, all of which are relevant. One meaning, as applied to a situation or problem, is "at a point of crisis". A second meaning is "expressing adverse or disapproving comments or judgments". A third is related to the verb "to critique", meaning "to analyze the merits and faults of". The authors contributing to this book pose challenging questions, from multiple perspectives, about the roles of mathematics in society and the implications for education. Traditional reasons for teaching mathematics include: preparing a new generation of mathematics researchers and a cadre of technically competent users of mathematics; training students to think logically; and because mathematics is as much part of cultural heritage as literature or music. These reasons remain valid, though open to critique, but a deeper analysis is required that recognizes the roles of mathematics in framing many aspects of contemporary society, that will connect mathematics education to the lived experiences of students, their communities, and society in general, and that acknowledges the global ethical responsibilities of mathematicians and mathematics educators. The book is organized in four sections (1) Mathematics education: For what and why? (2) Globalization and cultural diversity, (3) Mathematics, education, and society and (4) Social justice in, and through, mathematics education The chapters address fundamental issues such as the relevance of school mathematics in people's lives; creating a sense of agency for the field of mathematics education, and redefining the relationship between mathematics as discipline, mathematics as school subject and mathematics as part of people's lives.
In math, like any subject, real learning takes place when students can connect what they already know to new ideas. In "Connecting Mathematical Idea"s, Jo Boaler and Cathy Humphreys offer a comprehensive way to improve your ability to help adolescents build connections between different mathematical ideas and representations and between domains like algebra and geometry. "Connecting Mathematical Ideas" contains two-CDs worth of video case studies from Humphreys' own middle-school classroom that show her encouraging students to bridge complex mathematical concepts with their prior knowledge. Replete with math talk and coverage of topics like representation, reasonableness, and proof, the CDs also include complete transcripts and study questions that stimulate professional learning. Meanwhile, the accompanying book guides you through the CDs with in-depth commentary from Boaler and Humphreys that breaks down and analyzes the lesson footage from both a theoretical and a practical standpoint. In addition to addressing the key content areas of middle school mathematics, Boaler and Humphreys pose and help you address a broad range of frequently asked pedagogical questions, such as: How can I organize productive class discussions? How do I ask questions that stimulate discussion and thought among my students? What's the most effective way to encourage reticent class members to speak up? What role should student errors play in my teaching? Go inside real classrooms to solve your toughest teaching questions. Use the case studies and the wealth of professional support within "Connecting Mathematical Ideas" and find new ways to help your students connect with math.
Traditionally, vocational mathematics and precollege mathematics have been separate in schools. But the technological world in which today's students will work and live calls for increasing connection between mathematics and its applications. Workplace-based mathematics may be good mathematics for everyone. High School Mathematics at Work illuminates the interplay between technical and academic mathematics. This collection of thought-provoking essaysâ€"by mathematicians, educators, and other expertsâ€"is enhanced with illustrative tasks from workplace and everyday contexts that suggest ways to strengthen high school mathematical education. This important book addresses how to make mathematical education of all students meaningfulâ€"how to meet the practical needs of students entering the work force after high school as well as the needs of students going on to postsecondary education. The short readable essays frame basic issues, provide background, and suggest alternatives to the traditional separation between technical and academic mathematics. They are accompanied by intriguing multipart problems that illustrate how deep mathematics functions in everyday settingsâ€"from analysis of ambulance response times to energy utilization, from buying a used car to "rounding off" to simplify problems. The book addresses the role of standards in mathematics education, discussing issues such as finding common ground between science and mathematics education standards, improving the articulation from school to work, and comparing SAT results across settings. Experts discuss how to develop curricula so that students learn to solve problems they are likely to encounter in lifeâ€"while also providing them with approaches to unfamiliar problems. The book also addresses how teachers can help prepare students for postsecondary education. For teacher education the book explores the changing nature of pedagogy and new approaches to teacher development. What kind of teaching will allow mathematics to be a guide rather than a gatekeeper to many career paths? Essays discuss pedagogical implication in problem-centered teaching, the role of complex mathematical tasks in teacher education, and the idea of making open-ended tasksâ€"and the student work they elicitâ€"central to professional discourse. High School Mathematics at Work presents thoughtful views from experts. It identifies rich possibilities for teaching mathematics and preparing students for the technological challenges of the future. This book will inform and inspire teachers, teacher educators, curriculum developers, and others involved in improving mathematics education and the capabilities of tomorrow's work force.
Secondary mathematics teachers are frequently required to take a large number of mathematics courses – including advanced mathematics courses such as abstract algebra – as part of their initial teacher preparation program and/or their continuing professional development. The content areas of advanced and secondary mathematics are closely connected. Yet, despite this connection many secondary teachers insist that such advanced mathematics is unrelated to their future professional work in the classroom. This edited volume elaborates on some of the connections between abstract algebra and secondary mathematics, including why and in what ways they may be important for secondary teachers. Notably, the volume disseminates research findings about how secondary teachers engage with, and make sense of, abstract algebra ideas, both in general and in relation to their own teaching, as well as offers itself as a place to share practical ideas and resources for secondary mathematics teacher preparation and professional development. Contributors to the book are scholars who have both experience in the mathematical preparation of secondary teachers, especially in relation to abstract algebra, as well as those who have engaged in related educational research. The volume addresses some of the persistent issues in secondary mathematics teacher education in connection to advanced mathematics courses, as well as situates and conceptualizes different ways in which abstract algebra might be influential for teachers of algebra. Connecting Abstract Algebra to Secondary Mathematics, for Secondary Mathematics Teachers is a productive resource for mathematics teacher educators who teach capstone courses or content-focused methods courses, as well as for abstract algebra instructors interested in making connections to secondary mathematics.
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.
Stanford mathematician and NPR Math Guy Keith Devlin explains why, fun aside, video games are the ideal medium to teach middle-school math. Aimed primarily at teachers and education researchers, but also of interest to game developers who want to produce videogames for mathematics education, Mathematics Education for a New Era: Video Games as a Med
This book examines the critical roles and effects of mathematics education. The exposition draws from the author’s forty-year mathematics career, integrating his research in the psychology of mathematical thinking into an overview of the true definition of math. The intention for the reader is to undergo a “corrective” experience, obtaining a clear message on how mathematical thinking tools can help all people cope with everyday life. For those who have struggled with math in the past, the book also aims to clarify that math learning difficulties are likely a result of improper pedagogy as opposed to any lack of intelligence on the part of the student. This personal treatise will be of interest to a variety of readers, from mathematics teachers and those who train them to those with an interest in education but who may lack a solid math background.
What does it mean to know mathematics? How does meaning in mathematics education connect to common sense or to the meaning of mathematics itself? How are meanings constructed and communicated and what are the dilemmas related to these processes? There are many answers to these questions, some of which might appear to be contradictory. Thus understanding the complexity of meaning in mathematics education is a matter of huge importance. There are twin directions in which discussions have developed—theoretical and practical—and this book seeks to move the debate forward along both dimensions while seeking to relate them where appropriate. A discussion of meaning can start from a theoretical examination of mathematics and how mathematicians over time have made sense of their work. However, from a more practical perspective, anybody involved in teaching mathematics is faced with the need to orchestrate the myriad of meanings derived from multiple sources that students develop of mathematical knowledge. This book presents a wide variety of theoretical reflections and research results about meaning in mathematics and mathematics education based on long-term and collective reflection by the group of authors as a whole. It is the outcome of the work of the BACOMET (BAsic COmponents of Mathematics Education for Teachers) group who spent several years deliberating on this topic. The ten chapters in this book, both separately and together, provide a substantial contribution to clarifying the complex issue of meaning in mathematics education. This book is of interest to researchers in mathematics education, graduate students of mathematics education, under graduate students in mathematics, secondary mathematics teachers and primary teachers with an interest in mathematics.
This book compiles and synthesizes existing research on teachers’ use of mathematics curriculum materials and the impact of curriculum materials on teaching and teachers, with a particular emphasis on – but not restricted to – those materials developed in the 1990s in response to the NCTM’s Principles and Standards for School Mathematics. Despite the substantial amount of curriculum development activity over the last 15 years and growing scholarly interest in their use, the book represents the first compilation of research on teachers and mathematics curriculum materials and the first volume with this focus in any content area in several decades.