Download Free Cone Penetration Test In A Virtual Calibration Chamber Book in PDF and EPUB Free Download. You can read online Cone Penetration Test In A Virtual Calibration Chamber and write the review.

Cone penetration test (CPT) is a fast and reliable site investigation tool for exploring soils and soft ground. While the interpretation of the test results in clay has advanced considerably from a theoretical and numerical viewpoint that of tests in sands still relies largely on empirical correlations. A major source of such correlations comes from tests done in calibration chambers (CC), where soil state and properties might be tightly controlled. Calibration chambers are relatively large pieces of equipment, and calibration chamber testing is expensive and time consuming. Moreover, CC tests are performed on freshly reconstituted sands whose fabric may vary from that of natural sand deposits. Hence, correlations developed for one type of sand might not be suitable for another sand deposit. Numerical DEM-based calibration chambers might offer an interesting alternative to the more cumbersome physical tests. This study is the first attempt to perform a three-dimensional DEM-based simulation of cone penetration test. The three-dimensional commercial DEM code (PFC3D) is used to develop Virtual Calibration Chamber CPT (VCC CPT) model. To achieve that objective, several steps were necessary. First, calibration of an analogue discrete material to represent Ticino sand was performed using single-element tests. Afterwards, the mechanical response of the discrete material was further validated by performing additional triaxial tests with different initial conditions. The VCC CPT model was then constructed. Comprehensive dimensional analysis showed that the best option to balance computational efficiency and realism was to fill the chamber with a scaled-up calibrated discrete material. An original filtering technique was proposed to extract steady state cone resistances. A basic series of simulations was performed to explore the effect of initial stress and relative density in cone resistance. The results obtained from the simulations did fit closely the trends that had been previously established using physical chambers. That result was taken as a general validation of the proposed simulation approach. From the micromechanical point of view, the granular material is highly discontinuous and inhomogeneous. Obtaining a homogeneous initial state (especially in the zone of the penetrating cone) is crucial to obtain easily interpretable results. Specific procedures to assess initial state inhomogeneities were developed. DEM-based models can provide results at various level of resolution i.e. the microscale, the meso-scale and the macro-scale. A large series of VCC CPT has been performed. Simulations were performed for models with different horizontal servo-control walls, various sizes of chamber, cone and particles and two boundary conditions. The results were analyzed, focusing on aspects such as chamber size, particle size and boundary condition effects on steady state cone resistance values. A smaller number of tests have also been examined from the point of view of shaft resistance. Most trends and results obtained are shown to be in agreement with previous physical tests. When disagreements appear, the causes are identified: the most severe disagreements result from initial inhomogeneities in the discrete model. The work described in this thesis showed ease the burden of future CPT calibrations in granular materials.
This book provides guidance on the specification, performance, use and interpretation of the Electric Cone Penetration Test (CPU), and in particular the Cone Penetration Test with pore pressure measurement (CPTU) commonly referred to as the "piezocone test".
NCHRP synthesis 368 explores the current practices of departments of transportation associated with cone penetration testing (CPT). The report examines cone penetrometer equipment options; field testing procedures; CPT data presentation and geostratigraphic profiling; CPT evaluation of soil engineering parameters and properties; CPT for deep foundations, pilings, shallow foundations, and embankments; and CPT use in ground modifications and difficult ground conditions.
Cone penetration testing (CPT) has become the industry standard for in situ testing of cohesionless soils, and in particular, field liquefaction evaluation. The empirical methods for the interpretation of CPT data are either based on field data or the observation of CPT measurements in laboratory samples. In this study, a miniature cone penetrometer (with a diameter of 6 mm) is developed for understanding the response of loose to medium-dense sands. A modified triaxial cell is used for sample preparation and containment of the sample during cone penetration. The miniature cone can measure cone tip resistance, sleeve friction, and excess pore water pressure developed at the cone tip. While cone tip resistance is measured by a separate load cell, sleeve friction is obtained by subtracting cone tip resistance from a combined measurement of tip resistance and sleeve frictional force. Due to the free-draining nature of the sand tested in this study, no excess pore water pressure is developed during cone penetration. The measured data from the miniature cone are verified by comparison with CPT resistances measured in several other calibration chamber experiments on similar sands. Compared to a large calibration chamber with a standard size cone, the miniature cone allows quicker and less expensive CPT experiments in a more uniform sample.
Cone Penetration Testing 2018 contains the proceedings of the 4th International Symposium on Cone Penetration Testing (CPT’18, Delft, The Netherlands, 21-22 June 2018), and presents the latest developments relating to the use of cone penetration testing in geotechnical engineering. It focuses on the solution of geotechnical challenges using the cone penetration test (CPT), CPT add-on measurements and companion in-situ penetration tools (such as full flow and free fall penetrometers), with an emphasis on practical experience and application of research findings. The peer-reviewed papers have been authored by academics, researchers and practitioners from many countries worldwide and cover numerous important aspects, ranging from the development of innovative theoretical and numerical methods of interpretation, to real field applications. This is an Open Access ebook, and can be found on www.taylorfrancis.com.
This abstracts volume (including full keynote and invited papers) contains the proceedings of the 5th International Symposium on Cone Penetration Testing (CPT’22), held in Bologna, Italy, 8-10 June 2022. More than 500 authors - academics, researchers, practitioners and manufacturers – contributed to the peer-reviewed papers included in this book, which includes three keynote lectures, four invited lectures and 169 technical papers. The contributions provide a full picture of the current knowledge and major trends in CPT research and development, with respect to innovations in instrumentation, latest advances in data interpretation, and emerging fields of CPT application. The paper topics encompass three well-established topic categories typically addressed in CPT events: - Equipment and Procedures - Data Interpretation - Applications. Emphasis is placed on the use of statistical approaches and innovative numerical strategies for CPT data interpretation, liquefaction studies, application of CPT to offshore engineering, comparative studies between CPT and other in-situ tests. Cone Penetration Testing 2022 contains a wealth of information that could be useful for researchers, practitioners and all those working in the broad and dynamic field of cone penetration testing.
Considering the difficulties associated with preparing loose sand samples in large calibration chambers and wide area of research on the behavior of loose sands, miniature calibration chamber experiments are used to perform cone penetration tests on soils in different states. A miniature cone calibration chamber has been designed and developed in this study. Nineteen tests have been performed on Ottawa sand and the results are compared to the available data in the literature. The accuracy of the results is validated by comparing the results with the suggested rate for the cone resistance in sands in literature. More specifically, results are compared with the results of the large calibration chamber tests performed on the same soil at University of Florida. Results are in a very good agreement with the literature and data available from large calibration chambers. Different soil identification systems are used to further validate and compare the results. Results of the performed tests are presented and discussed in terms of the repeatability of the developed apparatus, the effect of penetration rate, boundary condition effect, scale effect, particle crushing, overburden stress normalization and verification of the measurements. Some available procedures to perform a CPT-based liquefaction analysis including liquefaction susceptibility, triggering and post-liquefaction strength analysis are evaluated using the laboratory miniature CPT experiments performed in the current study. Some of the well-stablished equations to estimate soil properties required for liquefaction studies are also evaluated using the laboratory miniature CPT experiments performed in the current study. The existing methods for estimating state parameter from cone penetration test results are reviewed and an evaluation of the performance of the existing methods using the laboratory miniature CPT experiments performed in the current study is presented.
Site characterization is a fundamental step towards the proper design, construction and long term performance of all types of geotechnical projects, ranging from foundation, excavation, earth dams, embankments, seismic hazards, environmental issues, tunnels, near and offshore structures. Geotechnical and Geophysical Site Characterization 4 provides practical applications of novel and innovative technologies in geotechnical and geophysical engineering, and is of interest to academics, engineers and professionals involved in Geotechnical Engineering.