Download Free Concrete Technology Today Book in PDF and EPUB Free Download. You can read online Concrete Technology Today and write the review.

Concrete is widely used because of its versatility, affordability, and availability of raw materials, strength, and durability. Urban development that took place through the world in the last few decades yielded significant developments for concrete technology. The term high-performance concrete (HPC) is relatively new, and it refers to many properties such as strength, durability, sound and heat insulation, waterproofing, and side advantages such as air purification, self-cleaning, etc. Researchers and engineers are constantly working for improving concrete properties. This book provides the state of the art on recent progress in the high-performance concrete applications written by researchers and experts of the field. The book should be useful to graduate students, researchers, and practicing engineers in related fields.
The success of any concrete structure depends on the designer's sound knowledge of concrete and its behaviour under load, under temperature and humidity changes, and under exposure to the relevant environment and industrial conditions. This book gives students a thorough understanding of all aspects of concrete technology from first principles. It covers concrete ingredients, properties and behaviour in the finished structure with reference to national standards and recognised testing methods used in Britain, the European Union and the United States. Examples and problems are given throughout to emphasise the important aspects of each chapter. An excellent coursebook for all students of Civil Engineering, Structural Engineering and Building at degree or diploma level, Concrete Technology will also be a valuable reference book for practising engineers in the field.
A complete review of the fast-developing topic of high performance concrete (HPC) by one of the leading researchers in the field. It covers all aspects of HPC from materials, properties and technology, to construction and testing. The book will be valuable for all concrete technologists and construction engineers wishing to take advantage of the re
Production of Portland cement is responsible for about seven percent of the world's greenhouse gas emissions. The pressure to make the production of concrete more sustainable, or "greener", is considerable and increasing. This requires a wholesale shift in processes, materials and methods in the concrete industry. Pure Portland cement will nee
This book provides an up-to-date survey of durability issues, with a particular focus on specification and design, and how to achieve durability in actual concrete construction. It is aimed at the practising engineer, but is also a valuable resource for graduate-level programs in universities. Along with background to current philosophies it gathers together in one useful reference a summary of current knowledge on concrete durability, includes information on modern concrete materials, and shows how these materials can be combined to produce durable concrete. The approach is consistent with the increasing focus on sustainability that is being addressed by the concrete industry, with the current emphasis on ‘design for durability’.
Concrete technology for a sustainable development in the 21st century focuses on the problems and challenges for the concrete industry today and in the future with particular emphasis on environmental consiousness. Primary topics include: the improvement of concretes service life to ease technical and economical problems and the waste of natural resources; environmentally friendly concrete production including new production methods and recycling materials; and actually using concrete to solve environmental problems, for example through the containment of hazardous waste. The book is the result of the international workshop held in Lofoton, Norway. With very select contributions from the most distinguished international professional experts, this book provides a basic framework and guidelines for national and international bodies.
Textile reinforced concrete (TRC) has emerged in recent years as an attractive new high performance cement-based composite. Textiles can significantly improve the mechanical behavior of cement matrices under static and dynamic conditions, and give superior tensile strength, toughness, ductility, energy absorption and protection against environmental degrading influences. Flexibility with fabric production methods enables the control of fabric and yarn geometry. This, along with the ability to incorporate into the fabric a range of yarns of different types and performances, as well as cement matrix modifications, enables design of the composite to a wide range of needs. The book is intended to provide a comprehensive treatment of TRC, covering the basic fundamentals of the composite material itself and the principles governing its performance on a macro-scale as a component in a structure. It provides in-depth treatment of the fabric, methods for production of the composite, the micro-mechanics with special attention to the role of bonding and microstructure, behavior under static and dynamic loading, sustainability, design, and the applications of TRC composites.
Linking theory to practice, this book provides a better fundamental understanding of Portland cement and hydraulic binders which is necessary to make better concrete. It has been clearly demonstrated that concrete durability is closely linked to its water/binder ratio and proper curing during the first week after casting. In this rigorously presented work, Pierre-Claude Aïtcin explains the complexity of the hydration reaction and how to make, use and cure durable and sustainable concrete. This book also details the problems with Portland cement composition at present and outlines the concept of an ideal hydraulic binder which is technically and ecologically efficient, as well as being long-lasting and robust. Binders for Durable and Sustainable Concrete is a practical and innovative reference text which will be particularly relevant to engineers and chemists working in the Portland cement, concrete and admixture industries. This book will also be of interest to academics and graduate-level students in Civil Engineering departments who specialize in Portland cement and concrete technology.
Durability and service life design of concrete constructions have considerable socio-economic and environmental consequences, in which the permeability of concrete to aggressive intruders plays a vital role. Concrete Permeability and Durability Performance provides deep insight into the permeability of concrete, moving from theory to practice, and presents over 20 real cases, such as Tokyo’s Museum of Western Art, Port of Miami Tunnel and Hong Kong-Zhuhai-Macao sea-link, including field tests in the Antarctic and Atacama Desert. It stresses the importance of site testing for a realistic durability assessment and details the "Torrent Method" for non-destructive measurement of air-permeability. It also delivers answers for some vexing questions: Should the coefficient of permeability be expressed in m2 or m/s? How to get a "mean" pore radius of concrete from gas-permeability tests? Why should permeability preferably be measured on site? How can service life of reinforced concrete structures be predicted by site testing of gas-permeability and cover thickness? Practitioners will find stimulating examples on how to predict the coming service life of new structures and the remaining life of existing structures, based on site testing of air-permeability and cover thickness. Researchers will value theoretical principles, testing methods, as well as how test results reflect the influence of concrete mix composition and processing.