Download Free Concrete Structure Management Guide To Ownership And Good Practice Book in PDF and EPUB Free Download. You can read online Concrete Structure Management Guide To Ownership And Good Practice and write the review.

Construction projects are undertaken to meet a variety of business, service and aspirational objectives and needs. The success of a building or an element of infrastructure depends on how well it meets the owner's needs and interests or those of the users. Recent changes in owner attitudes to construction are reflected in an increasing interest in through-life costs, i.e. not only the capital costs of construction but also the operational costs associated with a structure's functional performance for a defined life span. The owner can greatly improve the likelihood of achieving the value they seek from the facility by being intimately and effectively involved in the definition of performance requirements at the start of the construction procurement process. The objective of fib Bulletin 44 is to provide guidance to owners of concrete structures on: the management of their concrete structures (buildings and infrastructure) as part of their business goals or the service objectives of their organization; best practice in the management of concrete structures; their responsibilities with respect to the management of their concrete structures; the wider context and issues of service life design; information and direction needed by the supporting professional team of architects, engineers, specifiers, contractors and others. This Guide also provides background information on topics such as deterioration processes and technical procedures used for the management of concrete structures, including reference to international standards for the protection and repair of concrete structures. These activities are illustrated by application examples/case histories and by a section addressing frequently asked questions. A brief review is made of some potential future developments.
The idea of preparing a technical document for the repairs and interventions upon concrete structures goes back to the former fib COM 5: Structural Service Life Aspects, being the goal of the then TG 5.9. After a long period of reduced activity, and taking into account the reorganization of fib commissions that meanwhile took place, on June 2017 a different approach was proposed to push forward the task of TG 8.1 (formerly TG 5.9). The (new) goal of TG 8.1 was to deliver a ‘how-to-do’ guide, gathering together protection, repair, and strengthening techniques for concrete structures. Chapters are intended to provide both guidelines and case-studies, serving as support to the application of fib MC 2020 pre-normative specifications. Each chapter was written by an editorial team comprising desirably at least a researcher, a designer and a contractor. Templates have been prepared in order to harmonize the contents and the presentation of the different methods. Following the writing process, chapters were reviewed by experts and, after amendments by the authors, they underwent a second review process by COM 8 and TG 3.4 members, as well as by different practitioners. For each protection, repair and strengthening method addressed in this guide, readers have a description of when to adopt it, which materials and systems are required, which techniques are available, and what kind of equipment is needed. It then presents a summary of stakeholders’ roles and qualifications, design guidelines referring to most relevant codes and references, the intervention procedure, quality control measures and monitoring and maintenance activities. Due to the extent of the guide, it was decided to publish it as bulletin 102, addressing protection and repair methods, and bulletin 103, addressing strengthening methods. We would like to thank the authors, reviewers and members of COM 8 and TG 3.4 for their work in developing this fib Bulletin, which we hope will be useful for professionals working in the field of existing concrete structures, especially those concerned with life-cycle management and conservation activities. As noted above, this Bulletin is also intended to act as a background and supporting document to the next edition of the fib Model Code for Concrete Structures, which is currently under development under the auspices of TG10.1 with the working title of ‘fib Model Code 2020’.
The idea of preparing a technical document for the repairs and interventions upon concrete structures goes back to the former fib COM5: Structural Service Life Aspects, being the goal of the then TG5.9. After a long period of reduced activity, and taking into account the reorganization of fib commissions that meanwhile took place, on June 2017 a different approach was proposed to push forward the task of TG8.1 (formerly TG5.9). The (new) goal of TG 8.1 was to deliver a ‘how-to-do’ guide, gathering together protection, repair, and strengthening techniques for concrete structures. Chapters are intended to provide both guidelines and case-studies, serving as support to the application of fib MC2020 pre-normative specifications. Each chapter was written by an editorial team comprising desirably at least a researcher, a designer and a contractor. Templates have been prepared in order to harmonize the contents and the presentation of the different methods. Following the writing process, chapters were reviewed by experts and, after amendments by the authors, they underwent a second review process by COM8 and TG3.4 members, as well as by different practitioners. For each protection, repair and strengthening method addressed in this guide, readers have a description of when to adopt it, which materials and systems are required, which techniques are available, and what kind of equipment is needed. It then presents a summary of stakeholders’ roles and qualifications, design guidelines referring to most relevant codes and references, the intervention procedure, quality control measures and monitoring and maintenance activities. Due to the extent of the guide, it was decided to publish it as bulletin 102, addressing protection and repair methods, and bulletin 103, addressing strengthening methods. We would like to thank the authors, reviewers and members of COM8 and TG3.4 for their work in developing this fib Bulletin, which we hope will be useful for professionals working in the field of existing concrete structures, especially those concerned with life-cycle management and conservation activities. As noted above, this Bulletin is also intended to act as a background and supporting document to the next edition of the fib Model Code for Concrete Structures, which is currently under development under the auspices of TG10.1 with the working title of "fib Model Code 2020".
The fib Awards for Outstanding Concrete Structures are attributed every four years at the fib Congress, with the goal of enhancing the international recognition of concrete structures that demonstrate the versatility of concrete as a structural medium. The award consists of a bronze plaque to be displayed on the structure, and certificates presented to the main parties responsible for the work. Applications are invited by the fib secretariat via the National Member Groups. Information on the competition is also made available on the fib’s website, and in the newsletter fib-news published in Structural Concrete. The submitted structures must have been completed during the four years prior to the year of the Congress at which the awards are attributed. The jury may accept an older structure, completed one or two years before, provided that it was not already submitted for the previous award attribution (Mumbai, 2014). The submitted structures must also have the support of an fib Head of Delegation or National Member Group Secretary in order to confirm the authenticity of the indicated authors. Entries consist of the completed entry form, three to five representative photos of the whole structure and/or any important details or plans, and short summary texts explaining: - the history of the project; - description of the structure; - particularities of its realisation (difficulties encountered, special solutions found, etc.). A jury designated by the Presidium selects the winners. The awards are attributed in two categories, Civil Engineering Structures (including bridges) and Buildings. Two or three ‘Winners’ and two to four ‘Special Mention’ recipients are selected in each category, depending on the number of entries received. The jury takes into account criteria such as: - design aspects, including aesthetics and design detailing; - construction practice and quality of work; - environmental aspects of the design and its construction; - durability and sustainability aspects; - significance of the contribution made by the entry to the development and improvement of concrete construction. The decisions of the jury are definitive and cannot be challenged. They are unveiled at a special ceremony during the fib Congress in Melbourne.
While it is generally accepted by owners and users that vehicles such as airplanes or cars must be subjected to a pre-defined maintenance plan during their lifetime, this is less obvious in public opinion for engineering structures and buildings. This may be related to the general feeling that “moving objects” should be more sensitive to aging and deterioration than “structures anchored in ground”! This may also relate to the fact that detailed maintenance manuals, which are considered obligatory by insurance companies, are generally for aircraft, boats and cars, but not systematically for civil engineering structures, except for iconic or major projects. The performance-based approach to the durability design and assessment of concrete structures is also becoming increasingly popular in the construction sector. In recent years, numerous studies have been carried out worldwide in order to better assess the expected properties related to the durability of concrete. This has led to the standardization of test protocols, but also to a better understanding of the main parameters impacting the overall durability of concrete. Documentation related to durability indicators will then become increasingly necessary for the accurate implementation of a performance-based approach that enables the promotion of sustainable materials. Durability models have a strong need for relevant in-field data feedback in order to define accurate inputs for modelling both during the design process (gathered from previous projects) and during the follow-up process to allow for re-calibration of inputs and re-assessment of durability expectations by the models if judged necessary. A framework for data collection was therefore considered extremely importance by the fib Commission 8: Durability, and is the objective of this fib Technical report “Birth-certificate and Through-Life Management Documentation”. It is indeed very important to collect relevant data within a comprehensive and standardized format, as now proposed by this fib Bulletin. Thanks to its pre-defined format, compatible with the general fib framework, “Birth-certificate and Through-Life Management Documentation” will definitively be useful to owners for the maintenance plan and intervention strategies of their assets. This operational technical report will also be very useful for designers, as it should encourage the collection of relevant information in databases to be used for future projects where a realistic assessment of expected properties is considered through largely similar concrete mix designs under given exposure conditions. The Commission, which deals with durability aspects, hopes that this Bulletin will provide users a valuable tool and perspective on service life management issues.
For a large part of the existing buildings and infrastructure the design life has been reached or will be reached in the near future. These structures might need to be reassessed in order to investigate whether the safety requirements are met. Current practice on the assessment of existing concrete structures however needs a thorough evaluation from a risk and reliability point of view, as they are mostly verified using simplified procedures based on the partial factor method commonly applied in design of new structures. Such assessments are often conservative and may lead to expensive upgrades. Although the last decades reliability-based assessment of existing concrete structures has gained wide attention in the research field, a consistent reliability-based assessment framework and a practically applicable codified approach which is compatible with the Eurocodes and accessible for common structural engineering problems in everyday practice is currently missing. Such an approach however allows for a more uniform, more objective and probably more widely applied assessment approach for existing concrete structures. Hence, in this bulletin two different partial factor formats are elaborated, i.e. the Design Value Method (DVM) and the Adjusted Partial Factor Method (APFM), enabling the incorporation of specific reliability related aspects for existing structures. The DVM proposes a fundamental basis for evaluating partial factors whereas the APFM provides adjustment factors to be applied on the partial factors for new structures in EN 1990. In this bulletin both methods are elaborated and evaluated and a basis is provided for decision making regarding the target safety level of existing structures.
Serviceability limit states are essential for appropriate function and durability of concrete structures. The attention is paid especially to the stress limitation, crack width analysis and deflection analysis. The document provides supplementary information to the fib Model Code 2010 (MC2010), where a limited space did not allow for a detailed description of individual procedures. The principles used in MC2010 in chapter 7.6 are explained in detail within this document. The stress analysis is focused on stresses in concrete and steel including the stress redistribution due to the long-term load and cracking of reinforced concrete and prestressed concrete elements. Crack width analysis explains the mechanism of cracking under mechanical loading and due to deformation restraint. Cracks in prestressed concrete elements are also discussed. Deflection analyses with different levels of accuracy are described including the shear effects. Examples illustrate the practical application of rules defined in the MC2010 of individual serviceability limit states. Simplified and more general methods are used. An important part of the bulletin shows the development and extension of the serviceability limit states after publishing of the MC2010 and alternative approaches. Special attention is paid to deflections of prestressed concrete beams, shear effects on deflection, slenderness limits and influence of the concrete cover. The final part deals with an application of numerical simulations.
The fib has two major missions now. One is to work toward the publication of the Model Code 2020, and the other is to respond to the global movement toward carbon neutrality. While the former is steadily progressing toward completion, the latter will require significant efforts for generations to come. As we all know, cement, the primary material for concrete, is a sector that accounts for 8.5% of the world’s CO2 emissions. And the structural concrete that fib handles consume 60% of that. In other words, we need to know the reality that our structural concrete is emitting 5% of the world’s CO2. From now on, fib members, suppliers, designers, builders, owner’s engineers, and academic researchers will be asked how to solve this difficult problem. In general, most of the CO2 emissions in the life cycle of structural concrete come from the production stage of materials and the use stage after construction, i.e. A1 to A3 and B1 to B5 processes as defined in EN15978. Cement and steel sectors, which are the main materials for structural concrete, are expected to take various measures to achieve zero carbon in their respective sectors by 2050. Until then, we must deal with the transition with our low carbon technologies. Regarding the production stage, the fib has recently launched TG4.8 “Low carbon concrete”. And the latest low carbon technologies will be discussed there. On the other hand, in the use stage, there is very little data on the relationship between durability and intervention and maintenance so far. The data accumulation here is the work of the fib, a group of various experts on structural concrete. Through-life management using highly durable structures and precise monitoring will enable to realize minimum maintenance in the use stage and to minimize CO2 emissions. Furthermore, it is also possible to contribute to the reduction of CO2 emissions in the further stage after the first cycle by responding to the circular economy, that is, deconstruction (C), reuse, and recycle (D). However, the technology in this field is still in its infancy, and further research and development is expected in the future. As described above, structural concrete can be carbon neutral in all aspects of its conception, and it can make a significant contribution when it is realized. The fib will have to address these issues in the future. Of course, it will not be easy, and it will take time. However, if we do not continue our efforts as the only international academic society on structural concrete in the world to achieve carbon neutrality, the significance of our very existence may be questioned. Long before Portland cement was invented, Roman concrete, made of volcanic ash and other materials, was the ultimate low-carbon material, and is still in use 2’000 years later because of its non-reinforced structure and lack of deterioration factors. Reinforced concrete, which made it possible to apply concrete to structures other than arches and domes, is only 150 years old. Prestressed concrete is even younger, with only 80 years of history. Now that we think about it, we realize that Roman concrete, which is non-reinforced low carbon concrete, is one of the examples of problem solving that we are trying to achieve. We have new materials, such as coated reinforcement, FRP, and fiber reinforced concrete, which can be used in any structural form. To overcome this challenge with all our wisdom would be to live up to the feat the Romans accomplished 2’000 years ago. Realizing highly durable and elegant structures with low-carbon concrete is the key to meet the demands of the world in the future. I hope you will enjoy reading this AOS brochure showing the Outstanding Concrete Structures Awards at the fib 2022 Congress in Oslo. And I also hope you will find some clues for the challenges we are facing.
Since the 1980’s, several buildings throughout the world have been subject to gas explosions, impact by cars or airplanes, or car bomb attacks. In many cases the effect of the impact or explosion has been the failure of a critical structural member at the perimeter of the building. After the failure, the load supported by that member could not be redistributed and part or all of the structure has collapsed in a progressive manner. The phenomenon that occurs when local failure is not confined to the area of initial distress, and spreads horizontally and/or vertically through the structure, is termed progressive collapse. Progressive collapse is a relatively rare event, as it requires both an accidental action to cause local damage and a structure that lacks adequate continuity, ductility, and redundancy to prevent the spread of damage. It is technically very difficult and economically prohibitive to design buildings for absolute safety. However it is possible to construct precast concrete buildings that afford an acceptable degree of safety with regard to accidental actions. A structure is normally designed to respond properly, without damage, under normal load conditions, but local and/or global damages cannot be avoided under the effect of an unexpected, but moderate degree of accidental overload. Properly designed and constructed structures usually possess reasonable probability not to collapse catastrophically under such loads, depending on different factors, for example: the type of loading; the degree and the location of accidental loading in regard to the structure and its structural members; the type of structural system, the construction technology, and the spans between structural vertical members, etc. No structure can be expected to be totally resistant to actions arising from an unexpected and extreme cause, but it should not be damaged to an extent that is disproportionate to the original cause. The aim of fib Bulletin 63 is to summarize the present knowledge on the subject and to provide guidance for the design of precast structures against progressive collapse. This is addressed in terms of (a) the classification of the actions, (b) their effect on the structural types, (c) the strategies to cope with such actions, (d) the design methods and (e) some typical detailing, all supplemented with illustrations from around the world, and some model calculations.
The first international FRC workshop supported by RILEM and ACI was held in Bergamo (Italy) in 2004. At that time, a lack of specific building codes and standards was identified as the main inhibitor to the application of this technology in engineering practice. The workshop aim was placed on the identification of applications, guidelines, and research needs in order for this advanced technology to be transferred to professional practice. The second international FRC workshop, held in Montreal (Canada) in 2014, was the first ACI-fib joint technical event. Many of the objectives identified in 2004 had been achieved by various groups of researchers who shared a common interest in extending the application of FRC materials into the realm of structural engineering and design. The aim of the workshop was to provide the State-of-the-Art on the recent progress that had been made in term of specifications and actual applications for buildings, underground structures, and bridge projects worldwide. The rapid development of codes, the introduction of new materials and the growing interest of the construction industry suggested presenting this forum at closer intervals. In this context, the third international FRC workshop was held in Desenzano (Italy), four years after Montreal. In this first ACI-fib-RILEM joint technical event, the maturity gained through the recent technological developments and large-scale applications were used to show the acceptability of the concrete design using various fibre compositions. The growing interests of civil infrastructure owners in ultra-high-performance fibre-reinforced concrete (UHPFRC) and synthetic fibres in structural applications bring new challenges in terms of concrete technology and design recommendations. In such a short period of time, we have witnessed the proliferation of the use of fibres as structural reinforcement in various applications such as industrial floors, elevated slabs, precast tunnel lining sections, foundations, as well as bridge decks. We are now moving towards addressing many durability-based design requirements by the use of fibres, as well as the general serviceability-based design. However, the possibility of having a residual tensile strength after cracking of the concrete matrix requires a new conceptual approach for a proper design of FRC structural elements. With such a perspective in mind, the aim of FRC2018 workshop was to provide the State-of-the-Art on the recent progress in terms of specifications development, actual applications, and to expose users and researchers to the challenges in the design and construction of a wide variety of structural applications. Considering that at the time of the first workshop, in 2004, no structural codes were available on FRC, we have to recognize the enormous work done by researchers all over the world, who have presented at many FRC events, and convinced code bodies to include FRC among the reliable alternatives for structural applications. This will allow engineers to increasingly utilize FRC with confidence for designing safe and durable structures. Many presentations also clearly showed that FRC is a promising material for efficient rehabilitation of existing infrastructure in a broad spectrum of repair applications. These cases range from sustained gravity loads to harsh environmental conditions and seismic applications, which are some of the broadest ranges of applications in Civil Engineering. The workshop was attended by researchers, designers, owner and government representatives as well as participants from the construction and fibre industries. The presence of people with different expertise provided a unique opportunity to share knowledge and promote collaborative efforts. These interactions are essential for the common goal of making better and sustainable constructions in the near future. The workshop was attended by about 150 participants coming from 30 countries. Researchers from all the continents participated in the workshop, including 24 Ph.D. students, who brought their enthusiasm in FRC structural applications. For this reason, the workshop Co-chairs sincerely thank all the enterprises that sponsored this event. They also extend their appreciation for the support provided by the industry over the last 30 years which allowed research centers to study FRC materials and their properties, and develop applications to making its use more routine and accepted throughout the world. Their important contribution has been essential for moving the knowledge base forward. Finally, we appreciate the enormous support received from all three sponsoring organizations of ACI, fib and Rilem and look forward to paving the path for future collaborations in various areas of common interest so that the developmental work and implementation of new specifications and design procedures can be expedited internationally.